The department is divided into the arrondissements of Châteauroux, Le Blanc, La Châtre and Issoudun, with 23 cantons and 245 communes. At Neuvy-St-Sépulchre there is a circular church of the 11th century, to which a nave was added in the 12th century, and at Mézières-en-Brenne there is an interesting church of the 14th century. At Levroux there is a fine church of the 13th century and the remains of a feudal fortress, and there is a magnificent château in the Renaissance style at Valençay.


INDRE-ET-LOIRE, a department of central France, consisting of nearly the whole of the old province of Touraine and of small portions of Orléanais, Anjou and Poitou. Pop. (1906) 337,916. Area 2377 sq. m. It is bounded N. by the departments of Sarthe and Loir-et-Cher, E. by Loir-et-Cher and Indre, S. and S.W. by Vienne and W. by Maine-et-Loire. It takes its name from the Loire and its tributary the Indre, which enter it on its eastern border and unite not far from its western border. The other chief affluents of the Loire in the department are the Cher, which joins it below Tours, and the Vienne, which waters the department’s southern region. Indre-et-Loire is generally level and comprises the following districts: the Gâtine, a pebbly and sterile region to the north of the Loire, largely consisting of forests and heaths with numerous small lakes; the fertile Varenne or valley of the Loire; the Champeigne, a chain of vine-clad slopes, separating the valleys of the Cher and Indre; the Véron, a region of vines and orchards, in the angle formed by the Loire and Vienne; the plateau of Sainte-Maure, a hilly and unproductive district in the centre of which are found extensive deposits of shell-marl; and in the south the Brenne, traversed by the Claise and the Creuse and forming part of the marshy territory which extends under the same name into Indre.

Indre-et-Loire is divided into the arrondissements of Tours, Loches and Chinon, with 24 cantons and 282 communes. The chief town is Tours, which is the seat of an archbishopric; and Chinon, Loches, Amboise, Chenonceaux, Langeais and Azay-le-Rideau are also important places with châteaus. The Renaissance château of Ussé, and those of Luynes (15th and 16th centuries) and Pressigny-le-Grand (17th century) are also of note. Montbazon possesses the imposing ruins of a square donjon of the 11th and 12th centuries. Preuilly has the most beautiful Romanesque church in Touraine. The Sainte Chapelle (16th century) at Champigny is a survival of a château of the dukes of Bourbon-Montpensier. The church of Montrésor (1532) with its mausoleum of the family of Montrésor; that of St Denis-Hors (12th and 16th century) close to Amboise, with the curious mausoleum of Philibert Babou, minister of finance under Francis I. and Henry II.; and that of Ste Catherine de Fierbois, of the 15th century, are of architectural interest. The town of Richelieu, founded 1631 by the famous minister of Louis XIII., preserves the enceinte and many of the buildings of the 17th century. Megalithic monuments are numerous in the department.


INDRI, a Malagasy word believed to mean “there it goes,” but now accepted as the designation of the largest of the existing Malagasy (and indeed of all) lemurs. Belonging to the family Lemuridae (see [Primates]) it typifies the subfamily Indrisinae, which includes the avahi and the sifakas (q.v.). From both the latter it is distinguished by its rudimentary tail, measuring only a couple of inches in length, whence its name of Indris brevicaudatus. Measuring about 24 in. in length, exclusive of the tail, the indri varies considerably in colour, but is usually black, with a variable number of whitish patches, chiefly about the loins and on the fore-limbs. The forests of a comparatively small tract on the east coast of Madagascar form its home. Shoots, flowers and berries form the food of the indri, which was first discovered by the French traveller and naturalist Pierre Sonnerat in 1780.

(R. L.*)


INDUCTION (from Lat. inducere, to lead into; cf. Gr. ἐπαγωγή), in logic, the term applied to the process of discovering principles by the observation and combination of particular instances. Aristotle, who did so much to establish the laws of deductive reasoning, neglected induction, which he identified with a complete enumeration of facts; and the schoolmen were wholly concerned with syllogistic logic. A new era opens with Bacon, whose writings all preach the principle of investigating the laws of nature with the purpose of improving the conditions of human life. Unluckily his mind was still enslaved by the formulae of the quasi-mechanical scholastic logic. He supposed that natural laws would disclose themselves by the accumulation and due arrangement of instances without any need for original speculation on the part of the investigator. In his Novum Organum there are directions for drawing up the various kinds of lists of instances. For two hundred years after Bacon’s death little was done towards the theory of induction; the reason being, probably, that the practical scientists knew no logic, while the university logicians, with their conservative devotion to the syllogism, knew no science. Whewell’s Philosophy of the Inductive Sciences (1840), the work of a thoroughly equipped scientist, if not of a great philosopher, shows due appreciation of the cardinal point neglected by Bacon, the function of theorizing in inductive research. He saw that science advances only in so far as the mind of the inquirer is able to suggest organizing ideas whereby our observations and experiments are colligated into intelligible system. In this respect J. S. Mill is inferior to Whewell: throughout his System of Logic (1843) he ignores the constitutive work of the mind, and regards knowledge as the merely passive reception of sensuous impressions. His work was intended mainly to reduce the procedure of induction to a regular demonstrative system like that of the syllogism; and it was for this purpose that he formulated his famous Four Methods of Experimental Inquiry. His work has contributed greatly to the systematic treatment of induction. But it must be remarked that his Four Methods are not methods of formal proof, as their author supposed, but methods whereby hypotheses are suggested or tested. The actual proof of an hypothesis is never formal, but always lies in the tests of experiment or observation to which it is subjected.

The current theory of induction as set forth in the standard works is so far satisfactory that it combines the merit of Whewell’s treatment with that of Mill’s; and yet it is plain that there is much for the logician of the future to accomplish. The most important faculty in scientific inquiry is the faculty of suggesting new and valuable hypotheses. But no one has ever given any explanation how the hypotheses arise in the mind: we attribute it to “genius,” which, of course, is no explanation at all. The logic of discovery, in the higher sense of the term, simply has no existence. Another important but neglected province of the subject is the relation of scientific induction to the inductions of everyday life. There are some who think that a study of this relation would quite transform the accepted view of induction. Consider such a piece of reasoning as may be heard any day in a court of justice, a detective who explains how in his opinion a certain burglary was effected. If all reasoning is either deductive or inductive, this must be induction. And yet it does not answer to the accepted definition of induction, “the process of discovering a general principle by observation of particular instances”: what the detective does is to reconstruct a particular crime; he evolves no general principle. Such reasoning is used by every man in every hour of his life: by it we understand what people are doing around us, and what is the meaning of the sense-impressions which we receive. In the logic of the future it will probably be recognized that scientific induction is only one form of this universal constructive or reconstructive faculty. Another most important question closely akin to that just mentioned is the true relation between these reasoning processes and our general life as active intelligent beings. How is it that the detective is able to understand the burglar’s plan of action?—the military commander to forecast the enemy’s plan of campaign? Primarily, because he himself is capable of making such plans. Men as active creatures co-operating with their fellow-men are incessantly engaged in forming plans and in apprehending the plans of those around them. Every plan may be viewed as a form of induction; it is a scheme invented to meet a given situation, an hypothesis which is put to the test of events, and is verified or refuted by practical success or failure. Such considerations widen still farther our view of scientific induction and help us to understand its relation to ordinary human thought and activity. The scientific investigator in his inductive stage is endeavouring to make out the plan on which his material is constructed. The phenomena serve as indications to help him in framing his hypothesis, generally a guess at first, which he proceeds to verify by experiment and the collection of additional facts. In the deductive stage he assumes that he has made out the plan and can apply it to the discovery of further detail. He has the capacity of detecting plans in nature because he is wont to form plans for practical purposes.