y = xm (m ≠ −1),

or in the form

y = a1 xm1 + a2 xm2 + ... + an xmn,

where none of the indices is equal to −1, was used by John Various Integrations. Wallis in his Arithmetica infinitorum (1655) as well as by Fermat (1659). The case in which m = −1 was that of the ordinary rectangular hyperbola; and Gregory of St Vincent in his Opus geometricum quadraturae circuli et sectionum coni (1647) had proved by the method of exhaustions that the area contained between the curve, one asymptote, and two ordinates parallel to the other asymptote, increases in arithmetic progression as the distance between the ordinates (the one nearer to the centre being kept fixed) increases in geometric progression. Fermat described his method of integration as a logarithmic method, and thus it is clear that the relation between the quadrature of the hyperbola and logarithms was understood although it was not expressed analytically. It was not very long before the relation was used for the calculation of logarithms by Nicolaus Mercator in his Logarithmotechnia (1668). He began by writing the equation of the curve in the form y = 1/(1 + x), expanded this expression in powers of x by the method of division, and integrated it term by term in accordance with the well-understood rule for finding the quadrature of a curve given by such an equation as that written at the foot of p. 325.

By the middle of the 17th century many mathematicians could perform integrations. Very many particular results had been obtained, and applications of them had been Integration before the Integral Calculus. made to the quadrature of the circle and other conic sections, and to various problems concerning the lengths of curves, the areas they enclose, the volumes and superficial areas of solids, and centres of gravity. A systematic account of the methods then in use was given, along with much that was original on his part, by Blaise Pascal in his Lettres de Amos Dettonville sur quelques-unes de ses inventions en géométrie (1659).

16. The problem of maxima and minima and the problem of tangents had also by the same time been effectively solved. Oresme in the 14th century knew that at a point where the ordinate of a curve is a maximum or a minimum Fermat’s methods of Differentiation. its variation from point to point of the curve is slowest; and Kepler in the Stereometria doliorum remarked that at the places where the ordinate passes from a smaller value to the greatest value and then again to a smaller value, its variation becomes insensible. Fermat in 1629 was in possession of a method which he then communicated to one Despagnet of Bordeaux, and which he referred to in a letter to Roberval of 1636. He communicated it to René Descartes early in 1638 on receiving a copy of Descartes’s Géométrie (1637), and with it he sent to Descartes an account of his methods for solving the problem of tangents and for determining centres of gravity.

Fig. 6.

Fermat’s method for maxima and minima is essentially our method. Expressed in a more modern notation, what he did was to begin by connecting the ordinate y and the abscissa x of a point of a curve by an equation which holds at all points of the curve, then to subtract the value of y in terms of x from the value obtained by substituting x + E for x, then to divide the difference by E, to put E = 0 in the quotient, and to equate the quotient to zero. Thus he differentiated with respect to x and equated the differential coefficient to zero.

Fermat’s method for solving the problem of tangents may be explained as follows:—Let (x, y) be the coordinates of a point P of a curve, (x′, y′), those of a neighbouring point P′ on the tangent at P, and let MM′ = E (fig. 6).