28. The famous dispute as to the priority of Newton and Leibnitz in the invention of the calculus began in 1699 through the publication by Nicolas Fatio de Duillier of a tract in which he stated that Newton was not only the Dispute concerning Priority. first, but by many years the first inventor, and insinuated that Leibnitz had stolen it. Leibnitz in his reply (Acta Eruditorum, 1700) cited Newton’s letters and the testimony which Newton had rendered to him in the Principia as proofs of his independent authorship of the method. Leibnitz was especially hurt at what he understood to be an endorsement of Duillier’s attack by the Royal Society, but it was explained to him that the apparent approval was an accident. The dispute was ended for a time. On the publication of Newton’s tract De quadratura curvarum, an anonymous review of it, written, as has since been proved, by Leibnitz, appeared in the Acta Eruditorum, 1705. The anonymous reviewer said: “Instead of the Leibnitzian differences Newton uses and always has used fluxions ... just as Honoré Fabri in his Synopsis Geometrica substituted steps of movements for the method of Cavalieri.” This passage, when it became known in England, was understood not merely as belittling Newton by comparing him with the obscure Fabri, but also as implying that he had stolen his calculus of fluxions from Leibnitz. Great indignation was aroused; and John Keill took occasion, in a memoir on central forces which was printed in the Philosophical Transactions for 1708, to affirm that Newton was without doubt the first inventor of the calculus, and that Leibnitz had merely changed the name and mode of notation. The memoir was published in 1710. Leibnitz wrote in 1711 to the secretary of the Royal Society (Hans Sloane) requiring Keill to retract his accusation. Leibnitz’s letter was read at a meeting of the Royal Society, of which Newton was then president, and Newton made to the society a statement of the course of his invention of the fluxional calculus with the dates of particular discoveries. Keill was requested by the society “to draw up an account of the matter under dispute and set it in a just light.” In his report Keill referred to Newton’s letters of 1676, and said that Newton had there given so many indications of his method that it could have been understood by a person of ordinary intelligence. Leibnitz wrote to Sloane asking the society to stop these unjust attacks of Keill, asserting that in the review in the Acta Eruditorum no one had been injured but each had received his due, submitting the matter to the equity of the Royal Society, and stating that he was persuaded that Newton himself would do him justice. A committee was appointed by the society to examine the documents and furnish a report. Their report, presented in April 1712, concluded as follows:
“The differential method is one and the same with the method of fluxions, excepting the name and mode of notation; Mr Leibnitz calling those quantities differences which Mr Newton calls moments or fluxions, and marking them with the letter d, a mark not used by Mr Newton. And therefore we take the proper question to be, not who invented this or that method, but who was the first inventor of the method; and we believe that those who have reputed Mr Leibnitz the first inventor, knew little or nothing of his correspondence with Mr Collins and Mr Oldenburg long before; nor of Mr Newton’s having that method above fifteen years before Mr. Leibnitz began to publish it in the Acta Eruditorum of Leipzig. For which reasons we reckon Mr Newton the first inventor, and are of opinion that Mr Keill, in asserting the same, has been no ways injurious to Mr Leibnitz.”
The report with the letters and other documents was printed (1712) under the title Commercium Epistolicum D. Johannis Collins et aliorum de analysi promota, jussu Societatis Regiae in lucem editum, not at first for publication. An account of the contents of the Commercium Epistolicum was printed in the Philosophical Transactions for 1715. A second edition of the Commercium Epistolicum was published in 1722. The dispute was continued for many years after the death of Leibnitz in 1716. To translate the words of Moritz Cantor, it “redounded to the discredit of all concerned.”
29. One lamentable consequence of the dispute was a severance of British methods from continental ones. In Great Britain it became a point of honour to use fluxions and other Newtonian methods, while on the continent the British and Continental Schools of Mathematics. notation of Leibnitz was universally adopted. This severance did not at first prevent a great advance in mathematics in Great Britain. So long as attention was directed to problems in which there is but one independent variable (the time, or the abscissa of a point of a curve), and all the other variables depend upon this one, the fluxional notation could be used as well as the differential and integral notation, though perhaps not quite so easily. Up to about the middle of the 18th century important discoveries continued to be made by the use of the method of fluxions. It was the introduction of partial differentiation by Leonhard Euler (1734) and Alexis Claude Clairaut (1739), and the developments which followed upon the systematic use of partial differential coefficients, which led to Great Britain being left behind; and it was not until after the reintroduction of continental methods into England by Sir John Herschel, George Peacock and Charles Babbage in 1815 that British mathematics began to flourish again. The exclusion of continental mathematics from Great Britain was not accompanied by any exclusion of British mathematics from the continent. The discoveries of Brook Taylor and Colin Maclaurin were absorbed into the rapidly growing continental analysis, and the more precise conceptions reached through a critical scrutiny of the true nature of Newton’s fluxions and moments stimulated a like scrutiny of the basis of the method of differentials.
30. This method had met with opposition from the first. Christiaan Huygens, whose opinion carried more weight than that of any other scientific man of the day, declared that the employment of differentials was unnecessary, Oppositions to the calculus. and that Leibnitz’s second differential was meaningless (1691). A Dutch physician named Bernhard Nieuwentijt attacked the method on account of the use of quantities which are at one stage of the process treated as somethings and at a later stage as nothings, and he was especially severe in commenting upon the second and higher differentials (1694, 1695). Other attacks were made by Michel Rolle (1701), but they were directed rather against matters of detail than against the general principles. The fact is that, although Leibnitz in his answers to Nieuwentijt (1695), and to Rolle (1702), indicated that the processes of the calculus could be justified by the methods of the ancient geometry, he never expressed himself very clearly on the subject of differentials, and he conveyed, probably without intending it, the impression that the calculus leads to correct results by compensation of errors. In England the method of fluxions had to face similar attacks. George Berkeley, bishop and philosopher, wrote in 1734 a tract entitled The Analyst; or a Discourse addressed to an Infidel Mathematician, in which he proposed to destroy the presumption that the The “Analyst” controversy. opinions of mathematicians in matters of faith are likely to be more trustworthy than those of divines, by contending that in the much vaunted fluxional calculus there are mysteries which are accepted unquestioningly by the mathematicians, but are incapable of logical demonstration. Berkeley’s criticism was levelled against all infinitesimals, that is to say, all quantities vaguely conceived as in some intermediate state between nullity and finiteness, as he took Newton’s moments to be conceived. The tract occasioned a controversy which had the important consequence of making it plain that all arguments about infinitesimals must be given up, and the calculus must be founded on the method of limits. During the controversy Benjamin Robins gave an exceedingly clear explanation of Newton’s theories of fluxions and of prime and ultimate ratios regarded as theories of limits. In this explanation he pointed out that Newton’s moment (Leibnitz’s “differential”) is to be regarded as so much of the actual difference between two neighbouring values of a variable as is needful for the formation of the fluxion (or differential coefficient) (see G. A. Gibson, “The Analyst Controversy,” Proc. Math. Soc., Edinburgh, xvii., 1899). Colin Maclaurin published in 1742 a Treatise of Fluxions, in which he reduced the whole theory to a theory of limits, and demonstrated it by the method of Archimedes. This notion was gradually transferred to the continental mathematicians. Leonhard Euler in his Institutiones Calculi differentialis (1755) was reduced to the position of one who asserts that all differentials are zero, but, as the product of zero and any finite quantity is zero, the ratio of two zeros can be a finite quantity which it is the business of the calculus to determine. Jean le Rond d’Alembert in the Encyclopédie méthodique (1755, 2nd ed. 1784) declared that differentials were unnecessary, and that Leibnitz’s calculus was a calculus of mutually compensating errors, while Newton’s method was entirely rigorous. D’Alembert’s opinion of Leibnitz’s calculus was expressed also by Lazare N. M. Carnot in his Réflexions sur la métaphysique du calcul infinitésimal (1799) and by Joseph Louis de la Grange (generally called Lagrange) in writings from 1760 onwards. Lagrange proposed in his Théorie des fonctions analytiques (1797) to found the whole of the calculus on the theory of series. It was not until 1823 that a treatise on the differential calculus founded upon the method of limits was published. The treatise was the Résumé des leçons ... sur Cauchy’s method of limits. le calcul infinitésimal of Augustin Louis Cauchy. Since that time it has been understood that the use of the phrase “infinitely small” in any mathematical argument is a figurative mode of expression pointing to a limiting process. In the opinion of many eminent mathematicians such modes of expression are confusing to students, but in treatises on the calculus the traditional modes of expression are still largely adopted.
31. Defective modes of expression did not hinder constructive work. It was the great merit of Leibnitz’s symbolism that a mathematician who used it knew what was to be done in order to formulate any problem analytically, Arithmetical basis of modern analysis. even though he might not be absolutely clear as to the proper interpretation of the symbols, or able to render a satisfactory account of them. While new and varied results were promptly obtained by using them, a long time elapsed before the theory of them was placed on a sound basis. Even after Cauchy had formulated his theory much remained to be done, both in the rapidly growing department of complex variables, and in the regions opened up by the theory of expansions in trigonometric series. In both directions it was seen that rigorous demonstration demanded greater precision in regard to fundamental notions, and the requirement of precision led to a gradual shifting of the basis of analysis from geometrical intuition to arithmetical law. A sketch of the outcome of this movement—the “arithmetization of analysis,” as it has been called—will be found in [Function]. Its general tendency has been to show that many theories and processes, at first accepted as of general validity, are liable to exceptions, and much of the work of the analysts of the latter half of the 19th century was directed to discovering the most general conditions in which particular processes, frequently but not universally applicable, can be used without scruple.
III. Outlines of the Infinitesimal Calculus.
32. The general notions of functionality, limits and continuity are explained in the article [Function]. Illustrations of the more immediate ways in which these notions present themselves in the development of the differential and integral calculus will be useful in what follows.
| Fig. 8. |
33. Let y be given as a function of x, or, more generally, let x and y be given as functions of a variable t. The first of these cases is included in the second by putting x = t. If certain conditions are satisfied the aggregate of the points determined Geometrical limits. by the functional relations form a curve. The first condition is that the aggregate of the values of t to which values of x and y correspond must be continuous, or, in other words, that these values must consist of all real numbers, or of all those real numbers which lie between assigned extreme numbers. When this condition is satisfied the points are “ordered,” and their order is determined by the order of the numbers t, supposed to be arranged in order of increasing or decreasing magnitude; also there are two senses of description of the curve, according as t is taken to increase or to diminish. The second condition is that the aggregate of the points which are determined by the functional relations must be “continuous.” This condition means that, if any point P determined by a value of t is taken, and any distance δ, however small, is chosen, it is possible to find two points Q, Q′ of the aggregate which are such that (i.) P is between Q and Q′, (ii.) if R, R′ are any points between Q and Q′ the distance RR′ is less than δ. The meaning of the word “between” in this statement is fixed by the ordering of the points. Sometimes additional conditions are imposed upon the functional relations before they are regarded as defining a curve. An aggregate of points which satisfies the two conditions stated above is sometimes called a “Jordan curve.” It by no means follows that every curve of this kind has a tangent. In order that the curve Tangents. may have a tangent at P it is necessary that, if any angle α, however small, is specified, a distance δ can be found such that when P is between Q and Q′, and PQ and PQ′ are less than δ, the angle RPR′ is less than α for all pairs of points R, R′ which are between P and Q, or between P and Q′ (fig. 8). When this condition is satisfied y is a function of x which has a differential coefficient. The only way of finding out whether this condition is satisfied or not is to attempt to form the differential coefficient. If the quotient of differences Δy/Δx has a limit when Δx tends to zero, y is a differentiable function of x, and the limit in question is the differential coefficient. The derived function, or differential coefficient, of a function ƒ(x) is always defined by the formula