Γ(x) · Γ(1 − x) = π/sin (xπ),

with the particular result

Γ(½)= √π.

The number

− [ d{ log Γ (1 + x) } ]x=0, or −Γ′(1),
dx

is called “Euler’s constant,” and is equal to the limit

lim.n=∞ [ ( 1 + ½ + 1⁄3 + ... + 1) − log n ];
n

its value to 15 decimal places is 0.577 215 664 901 532.

The function log Γ(1 + x) can be expanded in the series

log Γ (1 + x) = ½ log ( ) − ½ log 1 + x+ { 1 + Γ′;(1) } x
sin xπ 1 − x