The notation refers to a method of evaluating the integral. We may suppose the area divided into a very large number of very small rectangles by lines parallel to the axes. Then we multiply the value of ƒ at any point within a rectangle by the measure of the area of the rectangle, sum for all the rectangles, and pass to a limit by increasing the number of rectangles indefinitely and diminishing all their sides indefinitely. The process is usually effected by summing first for all the rectangles which lie in a strip between two lines parallel to one axis, say the axis of y, and afterwards for all the strips. This process is equivalent to integrating ƒ(x, y) with respect to y, keeping x constant, and taking certain functions of x as the limits of integration for y, and then integrating the result with respect to x between constant limits. The integral obtained in this way may be written in such a form as
| ∫ba dx { ∫ | ƒ2 (x) | ƒ(x, y)dy }, |
| ƒ1 (x) |
and is called a “repeated integral.” The identification of a surface integral, such as ∫∫ ƒ(x, y)dxdy, with a repeated integral cannot always be made, but implies that the function satisfies certain conditions of continuity. In the same way volume integrals are usually evaluated by regarding them as repeated integrals, and a volume integral is written in the form
∫∫∫ ƒ(x, y, z) dx dy dz.
Integrals such as surface and volume integrals are usually called “multiple integrals.” Thus we have “double” integrals, “triple” integrals, and so on. In contradistinction to multiple integrals the ordinary integral of a function of one variable with respect to that variable is called a “simple integral.”
A more general type of surface integral may be defined by taking an arbitrary surface, with or without an edge. We suppose in the first place that the surface is closed, or has no edge. We may mark a large number of points on the surface, and Surface Integrals. draw the tangent planes at all these points. These tangent planes form a polyhedron having a large number of faces, one to each marked point; and we may choose the marked points so that all the linear dimensions of any face are less than some arbitrarily chosen length. We may devise a rule for increasing the number of marked points indefinitely and decreasing the lengths of all the edges of the polyhedra indefinitely. If the sum of the areas of the faces tends to a limit, this limit is the area of the surface. If we multiply the value of a function ƒ at a point of the surface by the measure of the area of the corresponding face of the polyhedron, sum for all the faces, and pass to a limit as before, the result is a surface integral, and is written
∫∫∫ ƒ dS.
The Line Integrals.extension to the case of an open surface bounded by an edge presents no difficulty. A line integral taken along a curve is defined in a similar way, and is written
∫ ƒ ds
where ds is the element of arc of the curve (§ 33). The direction cosines of the tangent of a curve are dx/ds, dy/ds, dz/ds, and line integrals usually present themselves in the form