Fig. vii.—Diagram of a mode of progression of a Ciliate like Paramecium; m, mouth and pharynx; the straight line A, B, represents the axis of progression described by the posterior end, and the spiral line the curve described by the anterior end; the clear circles are the contractile vacuoles on the dorsal side.

The position of the free-swimming Infusoria, like that of Rotifers and other small swimming animals, is with the front end of the body inclined outward to the axis of advance, constantly changing its azimuth while preserving its angle constant or nearly so; if advance were ignored the body would thus rotate so as to trace out a cone, with the hinder end at the apex, and the front describing the base. On any irritation, (1) the motion is arrested, (2) the animal reverses its cilia and swims backwards, (3) it swerves outwards away from the axis so as to make a larger angle with it, and (4) then swims forwards along a new axis of progression, to which it is inclined at the same angle as to the previous axis (figs. vi., vii.). In this way it alters its axis of progression when it finds itself under conditions of stimulation. Thus a Paramecium coming into a region relatively too cold, too hot, or too poor in CO2 or in nutriment, alters its direction of swimming; in this way individuals come to assemble in crowds where food is abundant, or even where there is a slight excess of CO2. This reaction may lead to fatal results; if a solution of corrosive sublimate (Mercuric chloride) diffuses towards the hinder end of the animal faster than it progresses, the stimulus affecting the hinder end first, the axis of progression is altered so as to bring the animal after a few changes into a region where the solution is strong enough to kill it. This “motile reaction,” first noted by H. S. Jennings, is the explanation of the general reactions of minute swimming animals to most stimuli of whatever character, including light; the practical working out is, as he terms it, a method of “trial and error.” The action, however, of a current of electricity is distinctly and immediately directive; but such a stimulus is not to be found in nature. The motile reaction in the Hypotrichaceae which crawl or dart in a straight line is somewhat different, the swerve being a simple turn to the right hand—i.e. away from the mouth.

Parasitism in the Infusoria is by no means so important as among Flagellates. Ichthyophthirius alone causes epidemics among Fishes, and Balantidium coli has been observed in intestinal disease in Man. The Isotricheae, among Aspirotrichaceae and the Ophryoscolecidae among Heterotrichaceae are found in abundance in the stomachs of Ruminants, and are believed to play a part in the digestion of cellulose, and thus to be rather commensals than parasites. A large number of attached species are epizoic commensals, some very indifferent in choice of their host, others particular not only in the species they infest, but also in the special organs to which they adhere. This is notably the case with the shelled Peritrichaceae. Lichnophora and Trichodina (fig. iii. 8, 9) among Peritrichaceae are capable of locomotion by their permanent posterior wreath or of attaching themselves by the sucker which surrounds it; Kerona polyporum glides habitually over the body of Hydra, as does Trichodina pediculus.

Several Suctoria are endoparasitic in Ciliata, and their occurrence led to the view that they represented stages in the life-history of these. Again, we find in the endosarc of certain Ciliates green nucleated cells, which have a cellulose envelope and multiply by fission inside or outside the animal. They are symbiotic Algae, or possibly the resting state of a Chlamydomonadine Flagellate (Carteria?), and have received the name Zoochlorella. They are of constant occurrence in Paramecium bursaria, frequent in Stentor polymorphus and S. igneus, and Ophrydium versatile, and a few other species, which become infected by swallowing them.

Classification.

Order I.—Section A.—Gymnostomaceae. Mouth habitually closed; swallowing an active process; cilia (or membranelles) uniform, usually distributed evenly over the body; form variable, sometimes of circular transverse section.

Section B.—Trichostomata. Mouth permanently open against the endosarc, provided with 1 or 2 undulating membranes often prolonged into an inturned pharynx; ingestion by action of oral ciliary apparatus.

Order 2.—Subsection (a).—Aspirotrichaceae. Cilia nearly uniform, not associated with cirrhi or membranelles, nor forming a peristomial wreath. Form usually flattened, mouth unilateral. (N.B.—Orders 1, 2 are sometimes united into the single order Holotrichaceae.)

Subsection (b).—Spirotricha. Wreath of distinct membranelles—or of cilia fused at the base—enclosing a peristomial area and leading into the mouth.

§§ i.—Wreath of separate membranelles.