Example 6.

x.u = tan x.δu.δ2u.δ3u.δ4u.
++++
11147 62
74°.03.48741 700 8
11847 70
74°.53.60588 770 9
12617 79
xu0 + θΔu0.θV1.1−θV0.θV1 + 1−θV0.u.
73°.6·−22 35···
73°.7·−39 11···
73°.8·−44 71···
73°.9·−33 54···
74°.03.48741 00 3.48741
74°.13.51110 40−24 58−33 54−58 123.51052
74°.23.53479 80−43 02−44 71−87 733.53392
74°.33.55849 20−49 18−39 11−88 293.55761
74°.43.58218 60−36 89−22 35−59 243.58159
74°.53.60588 00 3.60588

The following are the values of the coefficients of u1, δ2u1, δ4u1, and δ6u1 in (9) for certain values of n. For calculating the four terms due to δ2u1 in the case of n = 5 it should be noticed that the third term is twice the first, the fourth is the mean of the first and the third, and the second is the mean of the third and the fourth. In table 3, and in the last column of table 2, the coefficients are corrected in the last figure.

Table 1.—n = 5.

co. u.co. δ2u.co. δ4u.co. δ6u.
++
.2.032.006336.00135168 = 1/740 approx.
.4.056.010752.00226304 = 1/442  ”
.6.064.011648.00239616 = 1/417  ”
.8.048.008064.00160512 = 1/623  ”

Table 2.—n = 10.

co. u.co. δ2u.co. δ4u.co. δ6u.
++
.1.0165.00329175.000704591
.2.0320.00633600.001351680
.3.0455.00889525.001887064
.4.0560.01075200.002263040
.5.0625.01171875.002441406
.6.0640.01164800.002396160
.7.0595.01044225.002115799
.8.0480.00806400.001605120
.9.0285.00454575.000886421

Table 3.—n = 12.

co. u.co. δ2u.co. δ4u.co. δ6u.
++
1/12.013792438.002753699.000589623
2/12.027006173.005363726.001145822
3/12.039062500.007690430.001636505
4/12.049382716.009602195.002032211
5/12.057388117.010979463.002307357
6/12.062500000.011718750.002441406
7/12.064139660.011736667.002419911
8/12.061728395.010973937.002235432
9/12.054687500.009399414.001888275
10/12.042438272.007014103.001387048
11/12.024402006.003855178.000748981