ISOLA DEL LIRI, a town of Campania, in the province of Caserta, Italy, 15 m. by rail N.N.W. of Roccasecca, which is on the main line from Rome to Naples, 10 m. N.W. of Cassino. Pop. (1901), town, 2384; commune, 8244. The town consists of two parts, Isola Superiore and Isola Inferiore; as its name implies it is situated between two arms of the Liri. The many waterfalls of this river and of the Fibreno afford motive power for several important paper-mills. Two of the falls, 80 ft. in height, are especially fine. About 1 m. to the N. is the church of San Domenico, erected in the 12th century, which probably marks the site of the villa of Cicero (see [Arpino]).


ISOMERISM, in chemistry. When Wöhler, in 1825, analysed his cyanic acid, and Liebig his quite different fulminic acid in 1824, the composition of both compounds proved to be absolutely the same, containing each in round numbers 28% of carbon, 33% of nitrogen, 37% of oxygen and 2% of hydrogen. This fact, inconsistent with the then dominating conception that difference in qualities was due to difference in chemical composition, was soon corroborated by others of analogous nature, and so Berzelius introduced the term isomerism (Gr. ἰσομερής, composed of equal parts) to denominate the existence of the property of substances having different qualities, in chemical behaviour as well as physical, notwithstanding identity in chemical composition. These phenomena were quite in accordance with the atomic conception of matter, since a compound containing the same number of atoms of carbon, nitrogen, oxygen and hydrogen as another in the same weight might differ in internal structure by different arrangements of those atoms. Even in the time of Berzelius the newly introduced conception proved to include two different groups of facts. The one group included those isomers where the identity in composition was accompanied by identity in molecular weight, i.e. the vapour densities of the isomers were the same, as in butylene and isobutylene, to take the most simple case; here the molecular conception admits that the isolated groups in which the atoms are united, i.e. the molecules, are identical, and so the molecule of both butylene and isobutylene is indicated by the same chemical symbol C4H8, expressing that each molecule contains, in both cases, four atoms of carbon (C) and eight of hydrogen (H). This group of isomers was denominated metamers by Berzelius, and now often “isomers” (in the restricted sense), whereas the term polymerism (Gr. πολύς, many) was chosen for compounds like butylene, C4H8, and ethylene, C2H4, corresponding to the same composition in weight but differing in molecular formula, and having different densities in gas or vapour, a litre of butylene and isobutylene weighing, for instance, under ordinary temperature and pressure, about 2.5 gr., ethylene only one-half as much, since density is proportional to molecular weight.

A further distinction is necessary to a survey of the subdivisions of isomerism regarded in its widest sense. There are subtle and more subtle differences causing isomerism. In the case of metamerism we can imagine that the atoms are differently linked, say in the case of butylene that the atoms of carbon are joined together as a continuous chain, expressed by —C—C—C—C—, normally as it is called, whereas in isobutylene the fourth atom of carbon is not attached to the third but to the second carbon atom, i.e.

Now there are cases in which analogy of internal structure goes so far as to exclude even that difference in linking, the only remaining possibility then being the difference in relative position. This kind of isomerism has been denominated stereoisomerism (q.v.) often stereomerism. But there is a last group belonging here in which identity of structure goes farthest. There are substances such as sulphur, showing difference of modification in crystalline state—the ordinary rhombic form in which sulphur occurs as a mineral, while, after melting and cooling, long needles appear which belong to the monosymmetric system. These differences, which go hand in hand with those in other properties, e.g. specific heat and specific gravity, are absolutely confined to the crystalline state, disappearing with it when both modifications of sulphur are melted, or dissolved in carbon disulphide or evaporated. So it is natural to admit that here we have to deal with identical molecules, but that only the internal arrangement differs from case to case as identical balls may be grouped in different ways. This case of difference in properties combined with identical composition is therefore called polymorphism.

To summarize, we have to deal with polymerism, metamerism, stereoisomerism, polymorphism; whereas phenomena denominated tautomerism, pseudomerism and desmotropism form different particular features of metamerism, as well as the phenomena of allotropy, which is merely the difference of properties which an element may show, and can be due to polymerism, as in oxygen, where by the side of the ordinary form with molecules O2 we have the more active ozone with O3. Polymorphism in the case of an element is illustrated in the case of sulphur, whereas metamerism in the case of elements has so far as yet not been observed; and is hardly probable, as most elements are built up, like the metals, from molecules containing only one atom per molecule; here metamerism is absolutely excluded, and a considerable number of the rest, having diatomic molecules, are about in the same condition. It is only in cases like sulphur with octatomic molecules, where a difference of internal structure might play a part.

Before entering into detail it may be useful to consider the nature of isomerism from a general standpoint. It is probable that the whole phenomenon of isomerism is due to the possibility that compounds or systems which in reality are unstable yet persist, or so slowly change that practically one can speak of their stability; for instance, such systems as explosives and a mixture of hydrogen and oxygen, where the stable form is water, and in which, according to some, a slow but until now undetected change takes place even at ordinary temperatures. Consequently, of each pair of isomers we may establish beforehand which is the more stable; either in particular circumstances, a direct change taking place, as, for instance, with maleic acid, which when exposed to sunlight in presence of a trace of bromine, yields the isomeric fumaric acid almost at once, or, indirectly, one may conclude that the isomer which forms under greater heat-development is the more stable, at least at lower temperatures. Now, whether a real, though undetected, change occurs is a question to be determined from case to case; it is certain, however, that a substance like aragonite (a mineral form of calcium carbonate) has sensibly persisted in geological periods, though the polymorphous calcite is the more stable form. Nevertheless, the theoretical possibility, and its realization in many cases, has brought considerations to the front which have recently become of predominant interest; consequently the possible transformations of isomers and polymers will be considered later under the denomination of reversible or dynamical isomerisms.

Especially prominent is the fact that polymerism and metamerism are mainly reserved to the domain of organic chemistry, or the chemistry of carbon, both being discovered there; and, more especially, the phenomenon of metamerism in organic chemistry has largely developed our notions concerning the structure of matter. That this particular feature belongs to carbon compounds is due to a property of carbon which characterizes the whole of organic chemistry, i.e. that atoms attached to carbon, to express it in the atomic style, cling more intensely to it than, for instance, when combined with oxygen. This explains a good deal of the possible instability; and, from a practical point of view, it coincides with the fact that such a large amount of energy can be stored in our most intense explosives such as dynamite, the explanation being that hydrogen is attached to carbon distant from oxygen in the same molecule, and that only the characteristic resistance of the carbon linkage prevents the hydrogen from burning, which is the main occurrence in the explosion of dynamite. The possession of this peculiar property by carbon seems to be related to its high valency, amounting to four; and, generally, when we consider the most primitive expression of isomerism, viz. the allotropy of elements, we meet this increasing resistance with increasing valency. The monovalent iodine, for instance, is transformed by heating into an allotropic form, corresponding to the formula I, whereas ordinary iodine answers to I2. Now these modifications show hardly any tendency to persist, the one stable at high temperatures being formed at elevated temperatures, but changing in the reverse sense on cooling. In the divalent oxygen we meet with the modification called ozone, which, although unstable, changes but slowly into oxygen. Similarly the trivalent phosphorus in the ordinary white form shows such resistance as if it were practically stable; on the other hand the red modification is in reality also stable, being formed, for instance, under the influence of light. In the case of the quadrivalent carbon, diamond seems to be the stable form at ordinary temperatures, but one may wait long before it is formed from graphite.

This connexion of isomerism with resistant linking, and of this with high valency, explains, in considerable measure, why inorganic compounds afforded, as a rule, no phenomena of this kind until the systematic investigation of metallic compounds by Werner brought to light many instances of isomerism in inorganic compounds. Whereas carbon renders isomerism possible in organic compounds, cobalt and platinum are the determining elements in inorganic chemistry, the phenomena being exhibited especially by complex ammoniacal derivatives. The constitution of these inorganic isomers is still somewhat questionable; and in addition it seems that polymerism, metamerism and stereoisomerism play a part here, but the general feature is that cobalt and platinum act in them with high valency, probably exceeding four. The most simple case is presented by the two platinum compounds PtCl2(NH3)2, the platosemidiammine chloride of Peyrone, and the platosammine chloride of Jules Reiset, the first formed according to the equation PtCl4K2 + 2NH3 = PtCl2(NH3)2 + 2KCl, the second according to Pt(NH3)4Cl2 = PtCl2(NH3)2 + 2NH3, these compounds differing in solubility, the one dissolving in 33, the other in 160 parts of boiling water. With cobalt the most simple case was discovered in 1892 by S. Jörgensen in the second dinitrotetramminecobalt chloride, [Co(NO2)2(NH3)4]Cl, designated as flavo—whereas the older isomer of Gibbs was distinguished as croceo-salt. An interesting lecture on the subject was delivered by A. Werner before the German chemical society (Ber., 1907, 40, p. 15). (See [Cobalt]; [Platinum].)