The extraction of the metal from pure (or nearly pure) galena is the simplest of all metallurgical operations. The ore is roasted (i.e. heated in the presence of atmospheric oxygen) until all the sulphur is burned away and the lead left. This simple statement, however, correctly formulates only the final result. The first effect of the roasting is the elimination of sulphur as sulphur-dioxide, with formation of oxide and sulphate of lead. In practice this oxidation process is continued until the whole of the oxygen is as nearly as possible equal in weight to the sulphur present as sulphide or as sulphate, i.e. in the ratio S : O2. The heat is then raised in (relative) absence of air, when the two elements named unite into sulphur-dioxide, while a regulus of molten lead remains. Lead ores are smelted in the reverberatory furnace, the ore-hearth, and the blast-furnace. The use of the first two is restricted, as they are suited only for galena ores or mixtures of galena and carbonate, which contain not less than 58% lead and not more than 4% silica; further, ores to be treated in the ore-hearth should run low in or be free from silver, as the loss in the fumes is excessive. In the blast-furnace all lead ores are successfully smelted. Blast-furnace treatment has therefore become more general than any other.

Three types of reverberatory practice are in vogue—the English, Carinthian and Silesian. In Wales and the south of England the process is conducted in a reverberatory furnace, the sole of which is paved with slags from previous operations, and has a depression in the middle where the metal formed collects to be let off by a tap-hole. The dressed ore is introduced through a “hopper” at the top, and exposed to a moderate oxidizing flame until a certain proportion of ore is oxidized, openings at the side enabling the workmen to stir up the ore so as to constantly renew the surface exposed to the air. At this stage as a rule some rich slags of a former operation are added and a quantity of quicklime is incorporated, the chief object of which is to diminish the fluidity of the mass in the next stage, which consists in this, that, with closed air-holes, the heat is raised so as to cause the oxide and sulphate on the one hand and the sulphide on the other to reduce each other to metal. The lead produced runs into the hollow and is tapped off. The roasting process is then resumed, to be followed by another reduction, and so on.

A similar process is used in Carinthia; only the furnaces are smaller and of a somewhat different form. They are long and narrow; the sole is plane, but slopes from the fire-bridge towards the flue, so that the metal runs to the latter end to collect in pots placed outside the furnace. In Carinthia the oxidizing process from the first is pushed on so far that metallic lead begins to show, and the oxygen introduced predominates over the sulphur left. The mass is then stirred to liberate the lead, which is removed as Rührblei. Charcoal is now added, and the heat urged on to obtain Pressblei, an inferior metal formed partly by the action of the charcoal on the oxide of lead. The fuel used is fir-wood.

The Silesian furnace has an oblong hearth sloping from the fire-bridge to the flue-bridge. This causes the lead to collect at the coolest part of the hearth, whence it is tapped, &c., as in the English furnace. While by the English and Carinthian processes as much lead as possible is extracted in the furnace, with the Silesian method a very low temperature is used, thus taking out about one-half of the lead and leaving very rich slags (50% lead) to be smelted in the blast-furnace, the ultimate result being a very much higher yield than by either of the other processes. The loss in lead by the combined reverberatory and blast-furnace treatment is only 3.2%.

In Cumberland, Northumberland, Durham and latterly the United States, the reverberatory furnace is used only for roasting the ore, and the oxidized ore is then reduced by fusion in a low, square blast-furnace (a “Scottish hearth furnace”) lined with cast iron, as is also the inclined sole-plate which is made to project beyond the furnace, the outside portion (the “work-stone”) being provided with grooves guiding any molten metal that may be placed on the “stone” into a cast iron pot; the “tuyère” for the introduction of the wind was, in the earlier types, about half way down the furnace.

As a preliminary to the melting process, the “browse” left in the preceding operation (half-fused and imperfectly reduced ore) is introduced with some peat and coal, and heated with the help of the blast. It is then raked out on the work-stone and divided into a very poor “grey” slag which is put aside, and a richer portion, which goes back into the furnace. Some of the roasted ore is strewed upon it, and, after a quarter of an hour’s working, the whole is taken out on the work-stone, where the lead produced runs off. The “browse,” after removal of the “grey” slag, is reintroduced, ore added, and, after a quarter of an hour’s heating, the mass again placed on the work-stone, &c.

In the more recent form of the hearth process the blocks of cast iron forming the sides and back of the Scottish furnace are now generally replaced in the United States by water-cooled shells (water-jackets) of cast iron. In this way continuous working has been rendered possible, whereas formerly operations had to be stopped every twelve or fifteen hours to allow the over-heated blocks and furnace to cool down. A later improvement (which somewhat changes the mode of working) is that by Moffett. While he also prevents interruption of the operation by means of water-jackets, he uses hot-blast, and produces, besides metallic lead, large volumes of lead fumes which are drawn off by fans through long cooling tubes, and then forced through suspended bags which filter off the dust, called “blue powder.” Thus, a mixture of lead sulphate (45%) and oxide (44%) with some sulphide (8%), zinc and carbonaceous matter, is agglomerated by a heap-roast and then smelted in a slag-eye furnace with grey slag from the ore-hearth. The furnace has, in addition to the usual tuyères near the bottom, a second set near the throat in order to effect a complete oxidation of all combustible matter. Much fume is thus produced. This is drawn off, cooled and filtered, and forms a white paint of good body, consisting of about 65% lead sulphate, 26% lead oxide, 6% zinc oxide and 3% other substances. Thus in the Moffett method it is immaterial whether metal or fume is produced, as in either case it is saved and the price is about the same.

In smelting at once in the same blast-furnace ores of different character, the old use of separate processes of precipitation, roasting and reduction, and general reduction prevailing in the Harz Mountains, Freiberg and other places, to suit local conditions, has been abandoned. Ores are smelted raw if the fall of matte (metallic sulphide) does not exceed 5%; otherwise they are subjected to a preliminary oxidizing roast to expel the sulphur, unless they run too high in silver, say 100 oz. to the ton, when they are smelted raw. The leading reverberatory furnace for roasting lead-bearing sulphide ores has a level hearth 14-16 ft. wide and 60-80 ft. long. It puts through 9-12 tons of ore in twenty-four hours, reducing the percentage of sulphur to 2-4%, and requires four to six men and about 2 tons of coal. In many instances it has been replaced by mechanical furnaces, which are now common in roasting sulphide copper ores (see [Sulphuric Acid]). A modern blast-furnace is oblong in horizontal section and about 24 ft. high from furnace floor to feed floor. The shaft, resting upon arches supported by four cast iron columns about 9 ft. high, is usually of brick, red brick on the outside, fire-brick on the inside; sometimes it is made of wrought iron water-jackets. The smelting zone always has a bosh and a contracted tuyère section. It is enclosed by water-jackets, which are usually cast iron, sometimes mild steel. The hearth always has an Arents siphon tap. This is an inclined channel running through the side-wall, beginning near the bottom of the crucible and ending at the top of the hearth, where it is enlarged into a basin. The crucible and the channel form the two limbs of an inverted siphon. While the furnace is running the crucible and channel remain filled with lead; all the lead reduced to the metallic state in smelting collects in the crucible, and rising in the channel, overflows into the basin, whence it is removed. The slag and matte formed float upon the lead in the crucible and are tapped, usually together, at intervals into slag-pots, where the heavy matter settles on the bottom and the light slag on the top. When cold they are readily separated by a blow from a hammer. The following table gives the dimensions of some well-known American lead-furnaces.

Lead Blast-Furnace.