Fossil History.—Our knowledge of the geological history of the Lepidoptera is but scanty. Certain Oolitic fossil insects from the lithographic stone of Solenhofen, Bavaria, have been described as moths, but it is only in Tertiary deposits that undoubted Lepidoptera occur, and these, all referable to existing families, are very scarce. Most of them come from the Oligocene beds of Florissant, Colorado, and have been described by S. H. Scudder. The paucity of Lepidoptera among the fossils is not surprising when we consider the delicacy of their structure, and though their past history cannot be traced back beyond early Cainozoic times, we can have little doubt from the geographical distribution of some of the families that the order originated with the other higher Endopterygota in the Mesozoic epoch.
Classification.—The order Lepidoptera contains more than fifty families, the discussion of whose mutual relationships has given rise to much difference of opinion. The generally received distinction is between butterflies or Rhopalocera (Lepidoptera with clubbed feelers, whose habit is to fly by day) and moths or Heterocera (Lepidoptera with variously shaped feelers, mostly crepuscular or nocturnal in habit). This distinction is quite untenable as a zoological conception, for the relationship of butterflies to some moths is closer than that of many families of Heterocera to each other. Still more objectionable is the division of the order into Macrolepidoptera (including the butterflies and large moths) and the Microlepidoptera (comprising the smaller moths). Most of the recent suggestions for the division of the Lepidoptera into sub-orders depend upon some single character. Thus J. H. Comstock has proposed to separate the three lowest families, which have—like caddis-flies (Trichoptera)—a jugum on each forewing, as a suborder Jugatae, distinct from all the rest of the Lepidoptera—the Frenatae, mostly possessing a frenulum on the hindwing. A. S. Packard places one family (Micropterygidae) with functional mandibles and a lacinia in the first maxilla alone in a suborder Laciniata, all the rest of the order forming the suborder Haustellata. T. A. Chapman divides the families with free or incompletely obtect and mobile pupae (Incompletae) from those with obtect pupae which never leave the cocoon (Obtectae), and this is probably the most natural primary division of the Lepidoptera that has as yet been suggested. Dyar puts forward a classification founded entirely on the structure of the larva, while Tutt divides the Lepidoptera into three great stirps characterized by the shape of the chorion of the egg. The primitive form of the egg is oval, globular, or flattened with the micropyle at one end; from this has apparently been derived the upright form of egg with the micropyle on top which characterizes the butterflies and the higher moths. These schemes, though helpful in pointing out important differences, are unnatural in that they lay stress on single, often adaptive, characters to the exclusion of others equally important. Although it is perhaps best to establish no division among the Lepidoptera between the order and the family, an attempt has been made in the classification adopted in this article to group the families into tribes or super-families which may indicate their probable affinities. The systematic work of G. F. Hampson, A. R. Grote and E. Meyrick has done much to place the classification of the Lepidoptera on a sound basis, so far as the characters of the imago are concerned, but attention must also be paid to the preparatory stages if a truly natural system is to be reached.
Jugatae.
Three families are included in this group having in common certain primitive characters of the wings and neuration (see fig. 6), as well as of the larva and pupa. There is a membranous lobe or jugum near the base of the wing, and the neuration of the hindwing is closely like that of the forewing, the radial nervure being five-branched in both. The pupa has four or five movable segments, and the larval prolegs have complete circles of hooklets.
The three families of the Jugatae are not very closely related to each other. The Micropterygidae (often known as Eriocephalidae), comprising a few small moths with metallic wings, are the most primitive of all Lepidoptera. They are provided with functional mandibles, while the maxillae have distinct laciniae, well-developed palps and galeae not modified for suction (see fig. 3). The larva is remarkable on account of its long feelers, the presence of pairs of jointed prolegs on the first eight abdominal segments, an anal sucker beneath the last segment and bladder-like outgrowths on the cuticle. These curious larvae feed on wet moss. The family has only a few genera scattered widely over the earth’s surface (Europe, America, Australia, New Zealand).
The Eriocraniidae resemble the Micropterygidae in appearance, but the imago has no mandibles, and the maxillae, though short and provided with conspicuous palps, have no laciniae and form a proboscis as in Lepidoptera generally. The abdomen of the female carries a serrate piercing process, and the eggs are laid in the leaves of deciduous trees, the white larvae, with aborted legs, mining in the leaf tissue. The fully-fed larva winters in an underground cocoon and then changes into the most remarkable of all known lepidopterous pupae, with relatively enormous toothed mandibles which bite a way out of the cocoon in preparation for the final change. These pupal mandibles of the Eriocraniidae, together with the nature of the imaginal maxillae in the Micropterygidae (Eriocephalidae) and the wing-neuration in both families, point strongly to a relationship between the Lepidoptera and the Trichoptera.
The Hepialidae or swift moths—the third family of the Jugatae—are in some respects specialized. The moths are of large or moderate size with the maxillae in a vestigial condition, no food being taken after the attainment of the perfect state. The larvae (fig. 12) feed either on roots or in the wood of trees and shrubs, not attaining their growth in less than a year and some large exotic species living for two or three. The family is world-wide in range, and Australia possesses some almost gigantic and strangely coloured genera.
Tineides.
A large assemblage of moths, mostly of small size, are included in this group. The wings have no jugum, but there is a frenulum on the hindwing, which has, as in all the groups above the Jugatae, only a single radial nervure. Three anal nervures are present in the hindwing in those families whose wings are well developed, but in several families of small moths the wings of both pairs are very narrow and pointed, and the neuration is consequently reduced. The sub-costal nervure of the hindwing is usually present and distinct from the radial nervure. The egg is flat except in the Cossidae and Castniidae in which it is upright. The larval prolegs, with few exceptions, have a complete circle of hooklets, and the larvae usually feed in some concealed situation. The pupa is incompletely obtect, with three (in some females only two) to five free abdominal segments, and emerges partly from the cocoon before the moth appears. The cremaster serves to anchor the pupa to its cocoon at the correct degree of emergence, and thus facilitates the eclosion of the imago.
| Fig. 18.—Stygia australis. S. Europe. | Fig. 19.—Zeuzera scalaris. India. |