There is also a reference to the change of the logarithms on the title-page of the work.

These extracts contain all the original statements made by Napier, Robert Napier and Briggs which have reference to the origin of decimal logarithms. It will be seen that they are all in perfect agreement. Briggs pointed out in his lectures at Gresham College that it would be more convenient that 0 should stand for the logarithm of the whole sine as in the Descriptio, but that the logarithm of the tenth part of the whole sine should be 10,000,000,000. He wrote also to Napier at once; and as soon as he could he went to Edinburgh to visit him, where, as he was most hospitably received by him, he remained for a whole month. When they conversed about the change of system, Napier said that he had perceived and desired the same thing, but that he had published the tables which he had already prepared, so that they might be used until he could construct others more convenient. But he considered that the change ought to be so made that 0 should be the logarithm of unity and 10,000,000,000 that of the whole sine, which Briggs could not but admit was by far the most convenient of all. Rejecting therefore, those which he had prepared already, Briggs began, at Napier’s advice, to consider seriously the question of the calculation of new tables. In the following summer he went to Edinburgh and showed Napier the principal portion of the logarithms which he published in 1624. These probably included the logarithms of the first chiliad which he published in 1617.

It has been thought necessary to give in detail the facts relating to the conversion of the logarithms, as unfortunately Charles Hutton in his history of logarithms, which was prefixed to the early editions of his Mathematical Tables, and was also published as one of his Mathematical Tracts, has charged Napier with want of candour in not telling the world of Briggs’s share in the change of system, and he expresses the suspicion that “Napier was desirous that the world should ascribe to him alone the merit of this very useful improvement of the logarithms.” According to Hutton’s view, the words, “it is to be hoped that his posthumous work” ... which occur in the preface to the Chilias, were a modest hint that the share Briggs had had in changing the logarithms should be mentioned, and that, as no attention was paid to it, he himself gave the account which appears in the Arithmetica of 1624. There seems, however, no ground whatever for supposing that Briggs meant to express anything beyond his hope that the reason for the alteration would be explained in the posthumous work; and in his own account, written seven years after Napier’s death and five years after the appearance of the work itself, he shows no injured feeling whatever, but even goes out of his way to explain that he abandoned his own proposed alteration in favour of Napier’s, and, rejecting the tables he had already constructed, began to consider the calculation of new ones. The facts, as stated by Napier and Briggs, are in complete accordance, and the friendship existing between them was perfect and unbroken to the last. Briggs assisted Robert Napier in the editing of the “posthumous work,” the Constructio, and in the account he gives of the alteration of the logarithms in the Arithmetica of 1624 he seems to have been more anxious that justice should be done to Napier than to himself; while on the other hand Napier received Briggs most hospitably and refers to him as “amico mihi longè charissimo.”

Hutton’s suggestions are all the more to be regretted as they occur as a history which is the result of a good deal of investigation and which for years was referred to as an authority by many writers. His prejudice against Napier naturally produced retaliation, and Mark Napier in defending his ancestor has fallen into the opposite extreme of attempting to reduce Briggs to the level of a mere computer. In connexion with this controversy it should be noticed that the “Admonitio” on the last page of the Descriptio, containing the reference to the new logarithms, does not occur in all the copies. It is printed on the back of the last page of the table itself, and so cannot have been torn out from the copies that are without it. As there could have been no reason for omitting it after it had once appeared, we may assume that the copies which do not have it are those which were first issued. It is probable, therefore, that Briggs’s copy contained no reference to the change, and it is even possible that the “Admonitio” may have been added after Briggs had communicated with Napier. As special attention has not been drawn to the fact that some copies have the “Admonitio” and some have not, different writers have assumed that Briggs did or did not know of the promise contained in the “Admonitio” according as it was present or absent in the copies they had themselves referred to, and this has given rise to some confusion. It may also be remarked that the date frequently assigned to Briggs’s first visit to Napier is 1616, and not 1615 as stated above, the reason being that Napier was generally supposed to have died in 1618 until Mark Napier showed that the true date was 1617. When the Descriptio was published Briggs was fifty-seven years of age, and the remaining seventeen years of his life were devoted with steady enthusiasm to extend the utility of Napier’s great invention.

The only other mathematician besides Napier who grasped the idea on which the use of logarithm depends and applied it to the construction of a table is Justus Byrgius (Jobst Bürgi), whose work Arithmetische und geometrische Progress-Tabulen ... was published at Prague in 1620, six years after the publication of the Descriptio of Napier. This table distinctly involves the principle of logarithms and may be described as a modified table of antilogarithms. It consists of two series of numbers, the one being an arithmetical and the other a geometrical progression: thus

0, 1,0000 0000
10, 1,0001 0000
20, l,0002 0001
.   .   .   .  
990, l,0099 4967
.   .   .   .  

In the arithmetical column the numbers increase by 10, in the geometrical column each number is derived from its predecessor by multiplication by 1.0001. Thus the number 10x in the arithmetical column corresponds to 108 (1.0001)x in the geometrical column; the intermediate numbers being obtained by interpolation. If we divide the numbers in the geometrical column by 108 the correspondence is between 10x and (1.0001)x, and the table then becomes one of antilogarithms, the base being (1.0001)1/10, viz. for example (l.0001)1/10·990 = 1.00994967. The table extends to 230270 in the arithmetical column, and it is shown that 230270.022 corresponds to 9.9999 9999 or 109 in the geometrical column; this last result showing that (1.0001)23027.022 = 10. The first contemporary mention of Byrgius’s table occurs on page 11 of the “Praecepta” prefixed to Kepler’s Tabulae Radolphinae (1627); his words are: “apices logistici J. Byrgio multis annis ante editionem Neperianam viam praeiverent ad hos ipsissimos logarithmos. Etsi homo cunctator et secretorum suorum custos foetum in partu destituit, non ad usus publicos educavit.” Another reference to Byrgius occurs in a work by Benjamin Bramer, the brother-in-law and pupil of Byrgius, who, writing in 1630, says that the latter constructed his table twenty years ago or more.[4]

As regards priority of publication, Napier has the advantage by six years, and even fully accepting Bramer’s statement, there are grounds for believing that Napier’s work dates from a still earlier period.

The power of 10, which occurs as a factor in the tables of both Napier and Byrgius, was rendered necessary by the fact that the decimal point was not yet in use. Omitting this factor in the case of both tables, the connexion between N a number and L its “logarithm” is

N = (e−1)L (Napier),   L =(1.0001)1⁄10N (Byrgius),