The exponential function possesses the properties

(i.)exp (x + y) = exp x × exp y.
(ii.)(d/dx) exp x = exp x.
(iii.)exp x = 1 + x + x2/2! + x3/3! + ...

From (i.) and (ii.) it may be deduced that

exp x = (1 + 1 + 1/2! + 1/3! + ... )x,

where the right-hand side denotes the positive xth power of the number 1 + 1 + 1/2! + 1/3! + ... usually denoted by e. It is customary, therefore, to denote the exponential function by ex and the result

ex = 1 + x + x2/2! + x3/3! ...

is known as the exponential theorem.

The definitions of the logarithmic and exponential functions may be extended to complex values of x. Thus if x = ξ + iη

log x = ∫x1 dt
t

where the path of integration in the plane of the complex variable t is any curve which does not pass through the origin; but now log x is not a uniform function, that is to say, if x describes a closed curve it does not follow that log x also describes a closed curve: in fact we have