L = 107 loge 107 − 107 l or el = 107 e−L/(107)

Napier’s work (which will henceforth in this article be referred to as the Descriptio) immediately on its appearance in 1614 attracted the attention of perhaps the two most eminent English mathematicians then living—Edward Wright and Henry Briggs. The former translated the work into English; the latter was concerned with Napier in the change of the logarithms from those originally invented to decimal or common logarithms, and it is to him that the original calculation of the logarithmic tables now in use is mainly due. Both Napier and Wright died soon after the publication of the Descriptio, the date of Wright’s death being 1615 and that of Napier 1617, but Briggs lived until 1631. Edward Wright, who was a fellow of Caius College, Cambridge, occupies a conspicuous place in the history of navigation. In 1599 he published Certaine errors in Navigation detected and corrected, and he was the author of other works; to him also is chiefly due the invention of the method known as Mercator’s sailing. He at once saw the value of logarithms as an aid to navigation, and lost no time in preparing a translation, which he submitted to Napier himself. The preface to Wright’s edition consists of a translation of the preface to the Descriptio, together with the addition of the following sentences written by Napier himself: “But now some of our countreymen in this Island well affected to these studies, and the more publique good, procured a most learned Mathematician to translate the same into our vulgar English tongue, who after he had finished it, sent the Coppy of it to me, to bee seene and considered on by myselfe. I having most willingly and gladly done the same, finde it to bee most exact and precisely conformable to my minde and the originall. Therefore it may please you who are inclined to these studies, to receive it from me and the Translator, with as much good will as we recommend it unto you.” There is a short “preface to the reader” by Briggs, and a description of a triangular diagram invented by Wright for finding the proportional parts. The table is printed to one figure less than in the Descriptio. Edward Wright died, as has been mentioned, in 1615, and his son, Samuel Wright, in the preface states that his father “gave much commendation of this work (and often in my hearing) as of very great use to mariners”; and with respect to the translation he says that “shortly after he had it returned out of Scotland, it pleased God to call him away afore he could publish it.” The translation was published in 1616. It was also reissued with a new title-page in 1618.

Henry Briggs, then professor of geometry at Gresham College, London, and afterwards Savilian professor of geometry at Oxford, welcomed the Descriptio with enthusiasm. In a letter to Archbishop Usher, dated Gresham House, March 10, 1615, he wrote, “Napper, lord of Markinston, hath set my head and hands a work with his new and admirable logarithms. I hope to see him this summer, if it please God, for I never saw book which pleased me better, or made me more wonder.[1] I purpose to discourse with him concerning eclipses, for what is there which we may not hope for at his hands,” and he also states “that he was wholly taken up and employed about the noble invention of logarithms lately discovered.” Briggs accordingly visited Napier in 1615, and stayed with him a whole month.[2] He brought with him some calculations he had made, and suggested to Napier the advantages that would result from the choice of 10 as a base, an improvement which he had explained in his lectures at Gresham College, and on which he had written to Napier. Napier said that he had already thought of the change, and pointed out a further improvement, viz., that the characteristics of numbers greater than unity should be positive and not negative, as suggested by Briggs. In 1616 Briggs again visited Napier and showed him the work he had accomplished, and, he says, he would gladly have paid him a third visit in 1617 had Napier’s life been spared.

Briggs’s Logarithmorum chilias prima, which contains the first published table of decimal or common logarithms, is only a small octavo tract of sixteen pages, and gives the logarithms of numbers from unity to 1000 to 14 places of decimals. It was published, probably privately, in 1617, after Napier’s death,[3] and there is no author’s name, place or date. The date of publication is, however, fixed as 1617 by a letter from Sir Henry Bourchier to Usher, dated December 6, 1617, containing the passage—“Our kind friend, Mr Briggs, hath lately published a supplement to the most excellent tables of logarithms, which I presume he has sent to you.” Briggs’s tract of 1617 is extremely rare, and has generally been ignored or incorrectly described. Hutton erroneously states that it contains the logarithms to 8 places, and his account has been followed by most writers. There is a copy in the British Museum.

Briggs continued to labour assiduously at the calculation of logarithms, and in 1624 published his Arithmetica logarithmica, a folio work containing the logarithms of the numbers from l to 20,000, and from 90,000 to 100,000 (and in some copies to 101,000) to 14 places of decimals. The table occupies 300 pages, and there is an introduction of 88 pages relating to the mode of calculation, and the applications of logarithms.

There was thus left a gap between 20,000 and 90,000, which was filled up by Adrian Vlacq (or Ulaccus), who published at Gouda, in Holland, in 1628, a table containing the logarithms of the numbers from unity to 100,000 to 10 places of decimals. Having calculated 70,000 logarithms and copied only 30,000, Vlacq would have been quite entitled to have called his a new work. He designates it, however, only a second edition of Briggs’s Arithmetica logarithmica, the title running Arithmetica logarithmica sive Logarithmorum Chiliades centum, ... editio secunda aucta per Adrianum Vlacq, Goudanum. This table of Vlacq’s was published, with an English explanation prefixed, at London in 1631 under the title Logarithmicall Arithmetike ... London, printed by George Miller, 1631. There are also copies with the title-page and introduction in French and in Dutch (Gouda, 1628).

Briggs had himself been engaged in filling up the gap, and in a letter to John Pell, written after the publication of Vlacq’s work, and dated October 25, 1628, he says:—

“My desire was to have those chiliades that are wantinge betwixt 20 and 90 calculated and printed, and I had done them all almost by my selfe, and by some frendes whom my rules had sufficiently informed, and by agreement the busines was conveniently parted amongst us; but I am eased of that charge and care by one Adrian Vlacque, an Hollander, who hathe done all the whole hundred chiliades and printed them in Latin, Dutche and Frenche, 1000 bookes in these 3 languages, and hathe sould them almost all. But he hathe cutt off 4 of my figures throughout; and hathe left out my dedication, and to the reader, and two chapters the 12 and 13, in the rest he hath not varied from me at all.”

The original calculation of the logarithms of numbers from unity to 101,000 was thus performed by Briggs and Vlacq between 1615 and 1628. Vlacq’s table is that from which all the hundreds of tables of logarithms that have subsequently appeared have been derived. It contains of course many errors, which were gradually discovered and corrected in the course of the next two hundred and fifty years.

The first calculation or publication of Briggian or common logarithms of trigonometrical functions was made in 1620 by Edmund Gunter, who was Briggs’s colleague as professor of astronomy in Gresham College. The title of Gunter’s book, which is very scarce, is Canon triangulorum, and it contains logarithmic sines and tangents for every minute of the quadrant to 7 places of decimals.