The elements which are actually measured when determining the value of the earth’s field are usually the declination, the dip and the horizontal component (see [Magnetism, Terrestrial]). For the instruments and methods used in measuring the dip see [Inclinometer]. It remains to consider the measurement of the declination and the horizontal component, these two elements being generally measured with the same instrument, which is called a unifilar magnetometer.
| Fig. 1.—Unifilar Magnetometer, arranged to indicate declination. |
Measurement of Declination.—The measurement of the declination involves two separate observations, namely, the determination of (a) the magnetic meridian and (b) the geographical meridian, the angle between the two being the declination. In order to determine the magnetic meridian the orientation of the magnetic axis of a freely suspended magnet is observed; while, in the absence of a distant mark of which the azimuth is known, the geographical meridian is obtained from observations of the transit of the sun or a star. The geometrical axis of the magnet is sometimes defined by means of a mirror rigidly attached to the magnet and having the normal to the mirror as nearly as may be parallel to the magnetic axis. This arrangement is not very convenient, as it is difficult to protect the mirror from accidental displacement, so that the angle between the geometrical and magnetic axes may vary. For this reason the end of the magnet is sometimes polished and acts as the mirror, in which case no displacement of the reflecting surface with reference to the magnet is possible. A different arrangement, used in the instrument described below, consists in having the magnet hollow, with a small scale engraved on glass firmly attached at one end, while to the other end is attached a lens, so chosen that the scale is at its principal focus. In this case the geometrical axis is the line joining the central division of the scale to the optical centre of the lens. The position of the magnet is observed by means of a small telescope, and since the scale is at the principal focus of the lens, the scale will be in focus when the telescope is adjusted to observe a distant object. Thus no alteration in the focus of the telescope is necessary whether we are observing the magnet, a distant fixed mark, or the sun.
The Kew Observatory pattern unifilar magnetometer is shown in figs. 1 and 2. The magnet consists of a hollow steel cylinder fitted with a scale and lens as described above, and is suspended by a long thread of unspun silk, which is attached at the upper end to the torsion head H. The magnet is protected from draughts by the box A, which is closed at the sides by two shutters when an observation is being taken. The telescope B serves to observe the scale attached to the magnet when determining the magnetic meridian, and to observe the sun or star when determining the geographical meridian.
| Fig. 2.—Unifilar Magnetometer, arranged to show deflexion. |
When making a determination of declination a brass plummet having the same weight as the magnet is first suspended in its place, and the torsion of the fibre is taken out. The magnet having been attached, the instrument is rotated about its vertical axis till the centre division of the scale appears to coincide with the vertical cross-wire of the telescope. The two verniers on the azimuth circle having been read, the magnet is then inverted, i.e. turned through 180° about its axis, and the setting is repeated. A second setting with the magnet inverted is generally made, and then another setting with the magnet in its original position. The mean of all the readings of the verniers gives the reading on the azimuth circle corresponding to the magnetic meridian. To obtain the geographical meridian the box A is removed, and an image of the sun or a star is reflected into the telescope B by means of a small transit mirror N. This mirror can rotate about a horizontal axis which is at right angles to the line of collimation of the telescope, and is parallel to the surface of the mirror. The time of transit of the sun or star across the vertical wire of the telescope having been observed by means of a chronometer of which the error is known, it is possible to calculate the azimuth of the sun or star, if the latitude and longitude of the place of observation are given. Hence if the readings of the verniers on the azimuth circle are made when the transit is observed we can deduce the reading corresponding to the geographical meridian.
The above method of determining the geographical meridian has the serious objection that it is necessary to know the error of the chronometer with very considerable accuracy, a matter of some difficulty when observing at any distance from a fixed observatory. If, however, a theodolite, fitted with a telescope which can rotate about a horizontal axis and having an altitude circle, is employed, so that when observing a transit the altitude of the sun or star can be read off, then the time need only be known to within a minute or so. Hence in more recent patterns of magnetometer it is usual to do away with the transit mirror method of observing and either to use a separate theodolite to observe the azimuth of some distant object, which will then act as a fixed mark when making the declination observations, or to attach to the magnetometer an altitude telescope and circle for use when determining the geographical meridian.
The chief uncertainty in declination observations, at any rate at a fixed observatory, lies in the variable torsion of the silk suspension, as it is found that, although the fibre may be entirely freed from torsion before beginning the declination observations, yet at the conclusion of these observations a considerable amount of torsion may have appeared. Soaking the fibre with glycerine, so that the moisture it absorbs does not change so much with the hygrometric state of the air, is of some advantage, but does not entirely remove the difficulty. For this reason some observers use a thin strip of phosphor bronze to suspend the magnet, considering that the absence of a variable torsion more than compensates for the increased difficulty in handling the more fragile metallic suspension.
Measurement of the Horizontal Component of the Earth’s Field.—The method of measuring the horizontal component which is almost exclusively used, both in fixed observatories and in the field, consists in observing the period of a freely suspended magnet, and then obtaining the angle through which an auxiliary suspended magnet is deflected by the magnet used in the first part of the experiment. By the vibration experiment we obtain the value of the product of the magnetic moment (M) of the magnet into the horizontal component (H), while by the deflexion experiment we can deduce the value of the ratio of M to H, and hence the two combined give both M and H.
In the case of the Kew pattern unifilar the same magnet that is used for the declination is usually employed for determining H, and for the purposes of the vibration experiment it is mounted as for the observation of the magnetic meridian. The time of vibration is obtained by means of a chronometer, using the eye-and-ear method. The temperature of the magnet must also be observed, for which purpose a thermometer C (fig. 1) is attached to the box A.