| 1 | = | 1 | + | 4πne³Hp | , |
| v1² | v² | m² (s² − p²)² |
| 1 | = | 1 | − | 4πne³Hp | . |
| v2² | v² | m² (s² − p²)² |
The rotation r of the plane of polarization per unit length
| = ½p ( | 1 | − | 1 | ) = | 2πne³Hp²v | . |
| v1 | v2 | m² (s² − p²)² |
Since 1/v² = K0 + 4πne²/m (s² − p²), we have if µ is the refractive index for light of frequency p, and v0 the velocity of light in vacuo.
µ² − 1 = 4πne²v0² / m (s² − p²).
(1)
So that we may put
r = (µ² − 1)² p²H / sπµnev0³.
(2)