During the fermentation of dung a large proportion of the non-nitrogenous organic matters disappear in the forms of carbonic acid and water, while another portion is converted into humic acids which fix the ammonia gradually produced from the nitrogenous constituents of the solid and liquid excreta. The mineral matters remain behind entirely in the rotten dung, if care be taken to prevent loss by drainage. For proper decomposition, both air and moisture are requisite, while extreme dryness or too much water will arrest the due fermentation of the mass.

Well-fermented dung is more concentrated and consequently more efficacious than fresh farm-yard manure. Neither fresh nor rotten dung contains any appreciable quantity of volatile ammonia, and there is no advantage from applying gypsum, dilute acid, superphosphate, kainit, or other substances recommended as fixers of ammonia. If dung is carted into the field and spread out at once in thin layers it will suffer comparatively little loss. But if dung be kept for a length of time in shallow heaps, or in open straw-yards and exposed to rain, it loses by drainage a considerable proportion of its most valuable soluble fertilizing constituents. Experiments with farm-yard manure kept in an open yard showed that, after twelve months’ exposure to the weather, nearly all the soluble nitrogen and 78.2% of the soluble mineral matters were lost by drainage (A. Voelcker). To prevent this loss, farm-yard manure, as had been pointed out, should, whenever possible, be carted into the field, spread out at once, and ploughed in at the convenience of the farmer. It is, however, not always practicable to apply farm-yard manure just at the time it is made, and, as the manure heap cannot be altogether dispensed with, it is necessary to see how the manure may best be kept. The best dung is that made in regular pits or feeding-boxes. In them the urine is thoroughly absorbed, and, the manure being more compact through the constant treading, air enters less freely and the decomposition goes on less rapidly, the volatile matters, in consequence, not being so readily lost. External agents, such as rain, wind, sun, &c., do not affect the manure as they would in the case of open yards. Next best to box-fed manure is that made in covered yards, then that in sheds, and lastly that in open yards. When removed from the box or yard, the manure should be put in a heap upon a floor of clay or well-beaten-down earth, and then be covered with earth. When kept in an open yard, care should be taken not to let spoutings of buildings lead on to it, and if there be a liquid-manure tank, this might be pumped out over the manure again when the latter is too dry.

The advantages of farm-yard manure consist, not only in its supplying all the constituents of plant food, but also in the improved physical condition of the soil which results from its application, inasmuch as the land is thereby kept porous, and air is allowed free access. While, however, farm-yard manure has these advantages, experience has shown that artificial manures, properly selected so as to meet the requirements of the crops intended to be grown on the particular land, may be employed to greater advantage. In farm-yard manure about two-thirds of the weight is water and one-third dry matter; a large bulk thus contains only a small proportion of fertilizing substances, and expense is incurred for carriage of much useless matter when dung has to be carted to distant fields. When a plentiful supply of good farm-yard manure can be produced on the farm or bought at a moderate price in the immediate neighbourhood, it is economy to use it either alone or in conjunction with artificial manures; but when food is dear and fattening does not pay, or farm-yard manure is expensive to buy, it will be found more economical to use artificial manures. This has obtained confirmation from the experience of Mr Prout, at Sawbridgeworth, Herts, where since 1866, successive crops of corn have been grown, and entirely with the use of artificial manures.

The real difficulty with farm-yard manure is to get enough of it, and, if it were available in sufficiency, it would be safe to say that farmers generally would not require to go farther in regard to the manuring of any of the crops of the farm. Moreover, experiments at Rothamsted and Woburn have shown of how “lasting” a character farm-yard manure is, its influence having told for some 15 to 20 years after its application had ceased.

Light land is benefited by farm-yard manure through its supplying to the soil organic matter, and imparting to it “substance” whereby it becomes more consolidated and is better able to retain the manurial ingredients given to it. By improving the soil’s moisture-holding capacity, moreover, “burning” of the land is prevented.

With heavy clay soils the advantages are that these are kept more open in texture, drainage is improved, and the soil rendered easier of working. On light land, well-rotted manure is best to apply; and in spring, whereas on heavy land freshly-made, “long,” manure is best, and should be put on in autumn or winter.

Farm-yard manure, where the supply is limited, is mostly saved for the root-crop, which, however, generally needs a little superphosphate to start it, as farm-yard manure is not sufficiently rich in this constituent. It serves a great purpose in retaining the needed moisture in the soil for the root crop.

For potato-growing, for vegetables, and in market-gardening, farm-yard manure is almost indispensable. On grass-land and on clover-ley it is also very useful, and in the neighbourhood of large towns is employed greatly for the production of hay.

For corn crops also, and especially for wheat on heavy land, farm-yard manure is much used, and, in a dry season in particular, shows excellent results, though experiments at Rothamsted and Woburn have shown that, on heavy and light land alike, heavier crops of wheat and barley can be produced in average seasons by artificial manures.

Seaweed.—Along the sea-coast seaweed is collected, put in heaps and allowed to rot, being subsequently used on the land, just as farm-yard manure is. According to the nature of the weed and its water-contents, it may have from .3 to 1% of nitrogen, or more, with potash in some quantity.