h (z + c) − sin c = h (z + c′) − sin c′ = −h (z + 1⁄2c + 1⁄2c′) − sin 1⁄2 (c + c′).
L. Euler, in the Acta Acad. Imp. Petrop. (1778), first discussed this projection.
If a map of Asia between parallels 10° N. and 70° N. is constructed on this system, we have c = 20°, c′ = 80°, whence from the above equations z = 66.7° and h = .6138. The absolute errors of length along parallels 10°, 40° and 70° between any two meridians are equal but the scale errors are respectively 5, 6.7, and 15%.
The modification (d) of this projection was selected for the 1 : 1,000,000 map of India and Adjacent Countries under publication by the Survey of India. An account of this is given in a pamphlet produced by that department in 1903. The limiting parallels are 8° and 40° N., and the parallel of greatest error is 23° 40′ 51″. The errors of scale are 1.8, 2.3, and 1.9%.
It is not as a rule desirable to select this form of the projection. If the surface of the map is everywhere equally valuable it is clear that an arrangement by which errors of scale are larger towards the pole than towards the equator is unsound, and it is to be noted that in the case quoted the great bulk of the land is in the north of the map. Projection (a) would for the same region have three equal maximum scale errors of 2%. It may be admitted that the practical difference between the two forms is in this case insignificant, but linear scale errors should be reduced as much as possible in maps intended for general use.
f. In the fifth form of the projection, the total area of the projection between the extreme parallels and any two meridians is equated to the area of the portion of the sphere which it represents, and the errors of scale of the extreme parallels are equated. Then it is easy to show that
| z = (c′ sin c − c sin c′) / (sin c′ − sin c); |
| h = (cos c − cos c′) / (c′ − c) {z + 1⁄2 (c + c′)}. |
It can also be shown that any other zone of the same range in latitude will have the same scale errors along its limiting parallels. For instance, a series of projections may be constructed for zones, each having a range of 10° of latitude, from the equator to the pole. Treating the earth as a sphere and using the above formulae, the series will possess the following properties: the meridians will all be true to scale, the area of each zone will be correct, the scale errors of the limiting parallels will all be the same, so that the length of the upper parallel of any zone will be equal to that of the lower parallel of the zone above it. But the curvatures of these parallels will be different, and two adjacent zones will not fit but will be capable of exact rolling contact. Thus a very instructive flat model of the globe may be constructed which will show by suitably arranging the points of contact of the zones the paths of great circles on the sphere. The flat model was devised by Professor J. D. Everett, F.R.S., who also pointed out that the projection had the property of the equality of scale errors of the limiting parallels for zones of the same width. The projection may be termed Everett’s Projection.
Simple Conical Projection.—If in the last group of projections the two selected parallels which are to be errorless approach each other indefinitely closely, we get a projection in which all the meridians are, as before, of the true rectified lengths, in which one parallel is errorless, the curvature of that parallel being clearly that which would result from the unrolling of a cone touching the sphere along the parallel represented. And it was in fact originally by a consideration of the tangent cone that the whole group of conical projections came into being. The quasi-geometrical way of regarding conical projections is legitimate in this instance.
| Fig. 17. |