Fig. 22 is a representation of this system of the continents of Europe and Africa, for which it is well suited. For Asia this system would not do, as in the northern latitudes, say along the parallel of 70°, the representation is much cramped.

With regard to the distortion in the map of Africa as thus constructed, consider a small square in latitude 40° and in 40° longitude east or west of the central meridian, the square being so placed as to be transformed into a rectangle. The sides, originally unity, became 0.95 and 1.13, and the area 1.08, the diagonals intersecting at 90° ± 9° 56′. In Clarke’s perspective projection a square of unit side occupying the same position, when transformed to a rectangle, has its sides 1.02 and 1.15, its area 1.17, and its diagonals intersect at 90° ± 7° 6′. The latter projection is therefore the best in point of “similarity,” but the former represents areas best. This applies, however, only to a particular part of the map; along the equator towards 30° or 40° longitude, the polyconic is certainly inferior, while along the meridian it is better than the perspective—except, of course, near the centre. Upon the whole the more even distribution of distortion gives the advantage to the perspective system. For single sheets on large scales there is nothing to choose between this projection and the simple polyconic. Both are sensibly perfect representations. The rectangular polyconic is occasionally used by the topographical section of the general staff.

Zenithal Projections.

Some point on the earth is selected as the central point of the map; great circles radiating from this point are represented by straight lines which are inclined at their true angles at the point of intersection. Distances along the radiating lines vary according to any law outwards from the centre. It follows (on the spherical assumption), that circles of which the selected point is the centre are also circles on the projection. It is obvious that all perspective projections are zenithal.

Equidistant Zenithal Projection.—In this projection, which is commonly called the “equidistant projection,” any point on the sphere being taken as the centre of the map, great circles through this point are represented by straight lines of the true rectified lengths, and intersect each other at the true angles.

In the general case—

if z1 is the co-latitude of the centre of the map, z the co-latitude of any other point, α the difference of longitude of the two points, A the azimuth of the line joining them, and c the spherical length of the line joining them, then the position of the intersection of any meridian with any parallel is given (on the spherical assumption) by the solution of a simple spherical triangle.

Thus—

let tan θ = tan z cos α, then cos c = cos z sec θ cos (z − θ), and sin A = sin z sin α cosec c.

The most useful case is that in which the central point is the pole; the meridians are straight lines inclined to each other at the true angular differences of longitude, and the parallels are equidistant circles with the pole as centre. This is the best projection to use for maps exhibiting the progress of polar discovery, and is called the polar equidistant projection. The errors are smaller than might be supposed. There are no scale errors along the meridians, and along the parallels the scale error is (z / sin x) − 1, where z is the co-latitude of the parallel. On a parallel 10° distant from the pole the error of scale is only 0.5%.