dv= dv ds= v dv,   v = v ds= v2,
dt dsdt dsdt dsdt ρ

(12)

where ρ is the radius of curvature of the path at P, the tangential and normal accelerations are also expressed by v dv/ds and v2/ρ, respectively. Take, for example, the case of a particle moving on a smooth curve in a vertical plane, under the action of gravity and the pressure R of the curve. If the axes of x and y be drawn horizontal and vertical (upwards), and if ψ be the inclination of the tangent to the horizontal, we have

mv dv= − mg sin ψ = − mg dy,   mv2= − mg cos ψ + R.
ds dsρ

(13)

The former equation gives

v2 = C − 2gy,

(14)

and the latter then determines R.

In the case of the pendulum the tension of the string takes the place of the pressure of the curve. If l be the length of the string, ψ its inclination to the downward vertical, we have δs = lδψ, so that v = ldψ/dt. The tangential resolution then gives