whence

(8)

∂ẋ= ∂x.
∂q̇r ∂qr

Also

(9)

d( ∂x) = ∂2xq̇1 + ∂2xq̇2 + ... + ∂2xq̇r = ∂ẋ.
dt ∂qr∂q1∂qr ∂q2∂qr∂qn∂qr ∂qr

Hence

(10)

∂x= d( ẋ ∂x) − ẋ d( ∂x) = d( ẋ ∂ẋ) − ẋ ∂ẋ.
∂qr dt∂qr dt∂qr dt∂q̇r ∂qr

By these and the similar transformations relating to y and z the equation (6) takes the form