The case of three degrees of freedom is instructive on account of the geometrical analogies. With a view to these we may write

2T = aẋ2 + bẏ2 + cż2 + 2fẏż + 2gżẋ + 2hẋẏ,
2V = Ax2 + By2 + Cz2 + 2Fyz + 2Gzx + 2Hxy.

(21)

It is obvious that the ratio

V (x, y, z)
T (x, y, z)

(22)

must have a least value, which is moreover positive, since the numerator and denominator are both essentially positive. Denoting this value by σ12, we have

Ax1 + Hy1 + Gz1 = σ12 (ax1 + hy1 + ∂gz1),
Hx1 + By1 + Fz1 = σ12 (hx1 + by1 + fz1),
Gx1 + Fy1 + Cz1 = σ12 (gx1 + fy1 + cz1),

(23)