Let the angular velocity of the rotation be denoted by α = dθ/dt, then the linear velocity of any point A at the distance r from the axis is αr; and the path of that point is a circle of the radius r described about the axis.

This is the principle of the modification of motion by the lever, which consists of a rigid body turning about a fixed axis called a fulcrum, and having two points at the same or different distances from that axis, and in the same or different directions, one of which receives motion and the other transmits motion, modified in direction and velocity according to the above law.

In the wheel and axle, motion is received and transmitted by two cylindrical surfaces of different radii described about their common fixed axis of turning, their velocity-ratio being that of their radii.

Fig. 90.

§ 29. Velocity Ratio of Components of Motion.—As the distance between any two points in a rigid body is invariable, the projections of their velocities upon the line joining them must be equal. Hence it follows that, if A in fig. 90 be a point in a rigid body CD, rotating round the fixed axis F, the component of the velocity of A in any direction AP parallel to the plane of rotation is equal to the total velocity of the point m, found by letting fall Fm perpendicular to AP; that is to say, is equal to

α · Fm.

Hence also the ratio of the components of the velocities of two points A and B in the directions AP and BW respectively, both in the plane of rotation, is equal to the ratio of the perpendiculars Fm and Fn.

§ 30. Instantaneous Axis of a Cylinder rolling on a Cylinder.—Let a cylinder bbb, whose axis of figure is B and angular velocity γ, roll on a fixed cylinder ααα, whose axis of figure is A, either outside (as in fig. 91), when the rolling will be towards the same hand as the rotation, or inside (as in fig. 92), when the rolling will be towards the opposite hand; and at a given instant let T be the line of contact of the two cylindrical surfaces, which is at their common intersection with the plane AB traversing the two axes of figure.

The line T on the surface bbb has for the instant no velocity in a direction perpendicular to AB; because for the instant it touches, without sliding, the line T on the fixed surface aaa.

The line T on the surface bbb has also for the instant no velocity in the plane AB; for it has just ceased to move towards the fixed surface aaa, and is just about to begin to move away from that surface.