(19)

is the differential equation of the pair of rolling curves.

To illustrate this subject, it may be mentioned that an ellipse rotating about one focus rolls completely round in outside gearing with an equal and similar ellipse also rotating about one focus, the distance between the axes of rotation being equal to the major axis of the ellipses, and the velocity ratio varying from (1 + eccentricity)/(1 − eccentricity) to (1 − eccentricity)/(1 + eccentricity); an hyperbola rotating about its further focus rolls in inside gearing, through a limited arc, with an equal and similar hyperbola rotating about its nearer focus, the distance between the axes of rotation being equal to the axis of the hyperbolas, and the velocity ratio varying between (eccentricity + 1)/(eccentricity − 1) and unity; and a parabola rotating about its focus rolls with an equal and similar parabola, shifting parallel to its directrix.

Fig. 97.

§ 41. Conical or Bevel and Disk Wheels.—From Principles III. and VI. of § 39 it appears that the angular velocities of a pair of wheels whose axes meet in a point are to each other inversely as the sines of the angles which the axes of the wheels make with the line of contact. Hence we have the following construction (figs. 97 and 98).—Let O be the apex or point of intersection of the two axes OC1, OC2. The angular velocity ratio being given, it is required to find the line of contact. On OC1, OC2 take lengths OA1, OA2, respectively proportional to the angular velocities of the pieces on whose axes they are taken. Complete the parallelogram OA1EA2; the diagonal OET will be the line of contact required.

When the velocity ratio is variable, the line of contact will shift its position in the plane C1OC2, and the wheels will be cones, with eccentric or irregular bases. In every case which occurs in practice, however, the velocity ratio is constant; the line of contact is constant in position, and the rolling surfaces of the wheels are regular circular cones (when they are called bevel wheels); or one of a pair of wheels may have a flat disk for its rolling surface, as W2 in fig. 98, in which case it is a disk wheel. The rolling surfaces of actual wheels consist of frusta or zones of the complete cones or disks, as shown by W1, W2 in figs. 97 and 98.

Fig. 98.
Fig. 99.
Fig. 100.

§ 42. Sliding Contact (lateral): Skew-Bevel Wheels.—An hyperboloid of revolution is a surface resembling a sheaf or a dice box, generated by the rotation of a straight line round an axis from which it is at a constant distance, and to which it is inclined at a constant angle. If two such hyperboloids E, F, equal or unequal, be placed in the closest possible contact, as in fig. 99, they will touch each other along one of the generating straight lines of each, which will form their line of contact, and will be inclined to the axes AG, BH in opposite directions. The axes will not be parallel, nor will they intersect each other.

The motion of two such hyperboloids, turning in contact with each other, has hitherto been classed amongst cases of rolling contact; but that classification is not strictly correct, for, although the component velocities of a pair of points of contact in a direction at right angles to the line of contact are equal, still, as the axes are parallel neither to each other nor to the line of contact, the velocities of a pair of points of contact have components along the line of contact which are unequal, and their difference constitutes a lateral sliding.

The directions and positions of the axes being given, and the required angular velocity ratio, the following construction serves to determine the line of contact, by whose rotation round the two axes respectively the hyperboloids are generated:—