§ 71. Converging and Diverging Trains of Mechanism.—Two or more trains of mechanism may converge into one—as when the two pistons of a pair of steam-engines, each through its own connecting-rod, act upon one crank-shaft. One train of mechanism may diverge into two or more—as when a single shaft, driven by a prime mover, carries several pulleys, each of which drives a different machine. The principles of comparative motion in such converging and diverging trains are the same as in simple trains.

Division 6.—Aggregate Combinations.

§ 72. General Principles.—Willis designated as “aggregate combinations” those assemblages of pieces of mechanism in which the motion of one follower is the resultant of component motions impressed on it by more than one driver. Two classes of aggregate combinations may be distinguished which, though not different in their actual nature, differ in the data which they present to the designer, and in the method of solution to be followed in questions respecting them.

Class I. comprises those cases in which a piece A is not carried directly by the frame C, but by another piece B, relatively to which the motion of A is given—the motion of the piece B relatively to the frame C being also given. Then the motion of A relatively to the frame C is the resultant of the motion of A relatively to B and of B relatively to C; and that resultant is to be found by the principles already explained in Division 3 of this Chapter §§ 27-32.

Class II. comprises those cases in which the motions of three points in one follower are determined by their connexions with two or with three different drivers.

This classification is founded on the kinds of problems arising from the combinations. Willis adopts another classification founded on the objects of the combinations, which objects he divides into two classes, viz. (1) to produce aggregate velocity, or a velocity which is the resultant of two or more components in the same path, and (2) to produce an aggregate path—that is, to make a given point in a rigid body move in an assigned path by communicating certain motions to other points in that body.

It is seldom that one of these effects is produced without at the same time producing the other; but the classification of Willis depends upon which of those two effects, even supposing them to occur together, is the practical object of the mechanism.

Fig. 112.

§ 73. Differential Windlass.—The axis C (fig. 112) carries a larger barrel AE and a smaller barrel DB, rotating as one piece with the angular velocity α1 in the direction AE. The pulley or sheave FG has a weight W hung to its centre. A cord has one end made fast to and wrapped round the barrel AE; it passes from A under the sheave FG, and has the other end wrapped round and made fast to the barrel BD. Required the relation between the velocity of translation v2 of W and the angular velocity α1 of the differential barrel.

In this case v2 is an aggregate velocity, produced by the joint action of the two drivers AE and BD, transmitted by wrapping connectors to FG, and combined by that sheave so as to act on the follower W, whose motion is the same with that of the centre of FG.