where r is the external and r′ the internal radius.
| Fig. 129. |
In the cup and ball pivot the end of the shaft and the step present two recesses facing each other, into which art fitted two shallow cups of steel or hard bronze. Between the concave spherical surfaces of those cups is placed a steel ball, being either a complete sphere or a lens having convex surfaces of a somewhat less radius than the concave surfaces of the cups. The moment of friction of this pivot is at first almost inappreciable from the extreme smallness of the radius of the circles of contact of the ball and cups, but, as they wear, that radius and the moment of friction increase.
It appears that the rapidity with which a rubbing surface wears away is proportional to the friction and to the velocity jointly, or nearly so. Hence the pivots already mentioned wear unequally at different points, and tend to alter their figures. Schiele has invented a pivot which preserves its original figure by wearing equally at all points in a direction parallel to its axis. The following are the principles on which this equality of wear depends:—
The rapidity of wear of a surface measured in an oblique direction is to the rapidity of wear measured normally as the secant of the obliquity is to unity. Let OX (fig. 129) be the axis of a pivot, and let RPC be a portion of a curve such that at any point P the secant of the obliquity to the normal of the curve of a line parallel to the axis is inversely proportional to the ordinate PY, to which the velocity of P is proportional. The rotation of that curve round OX will generate the form of pivot required. Now let PT be a tangent to the curve at P, cutting OX in T; PT = PY × secant obliquity, and this is to be a constant quantity; hence the curve is that known as the tractory of the straight line OX, in which PT = OR = constant. This curve is described by having a fixed straight edge parallel to OX, along which slides a slider carrying a pin whose centre is T. On that pin turns an arm, carrying at a point P a tracing-point, pencil or pen. Should the pen have a nib of two jaws, like those of an ordinary drawing-pen, the plane of the jaws must pass through PT. Then, while T is slid along the axis from O towards X, P will be drawn after it from R towards C along the tractory. This curve, being an asymptote to its axis, is capable of being indefinitely prolonged towards X; but in designing pivots it should stop before the angle PTY becomes less than the angle of repose of the rubbing surfaces, otherwise the pivot will be liable to stick in its bearing. The moment of friction of “Schiele’s anti-friction pivot,” as it is called, is equal to that of a cylindrical journal of the radius OR = PT the constant tangent, under the same pressure.
Records of experiments on the friction of a pivot bearing will be found in the Proc. Inst. Mech. Eng. (1891), and on the friction of a collar bearing ib. May 1888.
§ 102. Friction of Teeth.—Let N be the normal pressure exerted between a pair of teeth of a pair of wheels; s the total distance through which they slide upon each other; n the number of pairs of teeth which pass the plane of axis in a unit of time; then
nƒNs
(63)
is the work lost in unity of time by the friction of the teeth. The sliding s is composed of two parts, which take place during the approach and recess respectively. Let those be denoted by s1 and s2, so that s = s1 + s2. In § 45 the velocity of sliding at any instant has been given, viz. u = c (α1 + α2), where u is that velocity, c the distance T1 at any instant from the point of contact of the teeth to the pitch-point, and α1, α2 the respective angular velocities of the wheels.