Fig. 136.

§ 128.* The Connecting Rod Problem.—A particular problem of practical importance is the determination of the force producing the motion of the connecting rod of a steam-engine mechanism of the usual type. The methods of the two preceding sections may be used when the acceleration of two points in the rod are known. In this problem it is usually assumed that the crank pin K (fig. 136) moves with uniform velocity, so that if α is its angular velocity and r its radius, the acceleration is α2r in a direction along the crank arm from the crank pin to the centre of the shaft. Thus the acceleration of one point K is known completely. The acceleration of a second point, usually taken at the centre of the crosshead pin, can be found by the principles of § 82, but several special geometrical constructions have been devised for this purpose, notably the construction of Klein,[4] discovered also independently by Kirsch.[5] But probably the most convenient is the construction due to G. T. Bennett[6] which is as follows: Let OK be the crank and KB the connecting rod. On the connecting rod take a point L such that KL × KB = KO2. Then, the crank standing at any angle with the line of stroke, draw LP at right angles to the connecting rod, PN at right angles to the line of stroke OB and NA at right angles to the connecting rod; then AO is the acceleration of the point B to the scale on which KO represents the acceleration of the point K. The proof of this construction is given in The Balancing of Engines.

The finding of F may be continued thus: join AK, then AK is the acceleration image of the rod, OKA being the acceleration diagram. Through G, the centre of gravity of the rod, draw Gg parallel to the line of stroke, thus dividing the image at g in the proportion that the connecting rod is divided by G. Hence Og represents the acceleration of the centre of gravity and, the weight of the connecting rod being ascertained, F can be immediately calculated. To find a point in its line of action, take a point Q on the rod such that KG × GQ = R2, R having been determined experimentally by the method of § 125; join G with O and through Q draw a line parallel to BO to cut GO in Z. Z is a point in the line of action of the resultant force F; hence through Z draw a line parallel to Og. The force F acts in this line, and thus the problem is completely solved. The above construction for Z is a corollary of the general theorem given in § 127.

§ 129. Impact. Impact or collision is a pressure of short duration exerted between two bodies.

The effects of impact are sometimes an alteration of the distribution of actual energy between the two bodies, and always a loss of a portion of that energy, depending on the imperfection of the elasticity of the bodies, in permanently altering their figures, and producing heat. The determination of the distribution of the actual energy after collision and of the loss of energy is effected by means of the following principles:—

I. The motion of the common centre of gravity of the two bodies is unchanged by the collision.

II. The loss of energy consists of a certain proportion of that part of the actual energy of the bodies which is due to their motion relatively to their common centre of gravity.

Unless there is some special reason for using impact in machines, it ought to be avoided, on account not only of the waste of energy which it causes, but from the damage which it occasions to the frame and mechanism.

(W. J. M. R.; W. E. D.)