§ 3. Plane Kinematics of a Rigid Body.—The ideal rigid body is one in which the distance between any two points is invariable. For the present we confine ourselves to the consideration of displacements in two dimensions, so that the body is adequately represented by a thin lamina or plate.

Fig. 9.

The position of a lamina movable in its own plane is determinate when we know the positions of any two points A, B of it. Since the four co-ordinates (Cartesian or other) of these two points are connected by the relation which expresses the invariability of the length AB, it is plain that virtually three independent elements are required and suffice to specify the position of the lamina. For instance, the lamina may in general be fixed by connecting any three points of it by rigid links to three fixed points in its plane. The three independent elements may be chosen in a variety of ways (e.g. they may be the lengths of the three links in the above example). They may be called (in a generalized sense) the co-ordinates of the lamina. The lamina when perfectly free to move in its own plane is said to have three degrees of freedom.

Fig. 10.
Fig. 11.

By a theorem due to M. Chasles any displacement whatever of the lamina in its own plane is equivalent to a rotation about some finite or infinitely distant point J. For suppose that in consequence of the displacement a point of the lamina is brought from A to B, whilst the point of the lamina which was originally at B is brought to C. Since AB, BC, are two different positions of the same line in the lamina they are equal, and it is evident that the rotation could have been effected by a rotation about J, the centre of the circle ABC, through an angle AJB. As a special case the three points A, B, C may be in a straight line; J is then at infinity and the displacement is equivalent to a pure translation, since every point of the lamina is now displaced parallel to AB through a space equal to AB.

Next, consider any continuous motion of the lamina. The latter may be brought from any one of its positions to a neighbouring one by a rotation about the proper centre. The limiting position J of this centre, when the two positions are taken infinitely close to one another, is called the instantaneous centre. If P, P′ be consecutive positions of the same point, and δθ the corresponding angle of rotation, then ultimately PP′ is at right angles to JP and equal to JP·δθ. The instantaneous centre will have a certain locus in space, and a certain locus in the lamina. These two loci are called pole-curves or centrodes, and are sometimes distinguished as the space-centrode and the body-centrode, respectively. In the continuous motion in question the latter curve rolls without slipping on the former (M. Chasles). Consider in fact any series of successive positions 1, 2, 3... of the lamina (fig. 11); and let J12, J23, J34... be the positions in space of the centres of the rotations by which the lamina can be brought from the first position to the second, from the second to the third, and so on. Further, in the position 1, let J12, J′23, J′34 ... be the points of the lamina which have become the successive centres of rotation. The given series of positions will be assumed in succession if we imagine the lamina to rotate first about J12 until J′23 comes into coincidence with J23, then about J23 until J′34 comes into coincidence with J34, and so on. This is equivalent to imagining the polygon J12 J′23 J′34 ..., supposed fixed in the lamina, to roll on the polygon J12 J23 J34 ..., which is supposed fixed in space. By imagining the successive positions to be taken infinitely close to one another we derive the theorem stated. The particular case where both centrodes are circles is specially important in mechanism.

Fig. 12.
Fig. 13.

The theory may be illustrated by the case of “three-bar motion.” Let ABCD be any quadrilateral formed of jointed links. If, AB being held fixed, the quadrilateral be slightly deformed, it is obvious that the instantaneous centre J will be at the intersection of the straight lines AD, BC, since the displacements of the points D, C are necessarily at right angles to AD, BC, respectively. Hence these displacements are proportional to JD, JC, and therefore to DD′ CC′, where C′D′ is any line drawn parallel to CD, meeting BC, AD in C′, D′, respectively. The determination of the centrodes in three-bar motion is in general complicated, but in one case, that of the “crossed parallelogram” (fig. 13), they assume simple forms. We then have AB = DC and AD = BC, and from the symmetries of the figure it is plain that

AJ + JB = CJ + JD = AD.

Hence the locus of J relative to AB, and the locus relative to CD are equal ellipses of which A, B and C, D are respectively the foci. It may be noticed that the lamina in fig. 9 is not, strictly speaking, fixed, but admits of infinitesimal displacement, whenever the directions of the three links are concurrent (or parallel).