These formulae give a means of constructing the resultant by means of any transversal AB cutting the lines of action. If we now imagine the point O to recede to infinity, the forces P, Q and the resultant R are parallel, and we have
R = P + Q, P·AC = Q·CB.
(5)
| Fig. 14. |
When P, Q have opposite signs the point C divides AB externally on the side of the greater force. The investigation fails when P + Q = 0, since it leads to an infinitely small resultant acting in an infinitely distant line. A combination of two equal, parallel, but oppositely directed forces cannot in fact be replaced by anything simpler, and must therefore be recognized as an independent entity in statics. It was called by L. Poinsot, who first systematically investigated its properties, a couple.
We now restrict ourselves for the present to the systems of forces in one plane. By successive applications of (ii) any such coplanar system can in general be reduced to a single resultant acting in a definite line. As exceptional cases the system may reduce to a couple, or it may be in equilibrium.
| Fig. 15. |
| Fig. 16. |
The moment of a force about a point O is the product of the force into the perpendicular drawn to its line of action from O, this perpendicular being reckoned positive or negative according as O lies on one side or other of the line of action. If we mark off a segment AB along the line of action so as to represent the force completely, the moment is represented as to magnitude by twice the area of the triangle OAB, and the usual convention as to sign is that the area is to be reckoned positive or negative according as the letters O, A, B, occur in “counter-clockwise” or “clockwise” order.
The sum of the moments of two forces about any point O is equal to the moment of their resultant (P. Varignon, 1687). Let AB, AC (fig. 16) represent the two forces, AD their resultant; we have to prove that the sum of the triangles OAB, OAC is equal to the triangle OAD, regard being had to signs. Since the side OA is common, we have to prove that the sum of the perpendiculars from B and C on OA is equal to the perpendicular from D on OA, these perpendiculars being reckoned positive or negative according as they lie to the right or left of AO. Regarded as a statement concerning the orthogonal projections of the vectors AB> and AC> (or BD), and of their sum AD>, on a line perpendicular to AO, this is obvious.
It is now evident that in the process of reduction of a coplanar system no change is made at any stage either in the sum of the projections of the forces on any line or in the sum of their moments about any point. It follows that the single resultant to which the system in general reduces is uniquely determinate, i.e. it acts in a definite line and has a definite magnitude and sense. Again it is necessary and sufficient for equilibrium that the sum of the projections of the forces on each of two perpendicular directions should vanish, and (moreover) that the sum of the moments about some one point should be zero. The fact that three independent conditions must hold for equilibrium is important. The conditions may of course be expressed in different (but equivalent) forms; e.g. the sum of the moments of the forces about each of the three points which are not collinear must be zero.