projects upwards from each of the yokes, the horizontal portions of the bars being parallel to the rods, and nearly meeting at a height of about 8 in. above them (thus
). A compass needle placed in the gap serves to detect any flow of induction that may exist between the bent bars. For simplicity of calculation, the clear length of each rod between the yokes is made 12.56 (= 4π) centimetres, while the coil surrounding the standard bar contains 100 turns; hence the magnetizing force due to a current of n amperes will be 10n C.G.S. units. The effective number of turns in the coil surrounding the test rod can be varied by means of three dial switches (for hundreds, tens and units), which also introduce compensating resistances as the number of effective turns in the coil is reduced, thus keeping the total resistance of the circuit constant. The two coils are connected in series, the same current passing through both. Suppose the switches to be adjusted so that the effective number of turns in the variable coil is 100; the magnetizing forces in the two coils will then be equal, and if the test rod is of the same quality as the standard, the flow of induction will be confined entirely to the iron circuit, the two yokes will be at the same magnetic potential, and the compass needle will not be affected. If, however, the permeability of the test rod differs from that of the standard, the number of lines of induction flowing in opposite directions through the two rods will differ, and the excess will flow from one yoke to the other, partly through the air, and partly along the path provided by the bent bars, deflecting the compass needle. But a balance may still be obtained by altering the effective number of turns in the test coil, and thus increasing or decreasing the magnetizing force acting on the test rod, till the induction in the two rods is the same, a condition which is fulfilled when reversal of the current has no effect on the compass needle. Let m be the number of turns in use, and H1 and H2 the magnetizing forces which produce the same induction B in the test and the standard rods respectively; then H1 = H2 × m/100. The value of B which corresponds to H2m/100 can be found from the (B, H) curve for the standard, which is assumed to have been determined; and this same value corresponds to the force H in the case of the test bar. Thus any desired number of corresponding values of H and B can be easily and quickly found.
Measurement of Field Strength. Exploring Coil.—Since in air B = H, the ballistic method of measuring induction described above is also available for determining the strength of a magnetic field, and is more often employed than any other. A small coil of fine wire, connected in series with a ballistic galvanometer, is placed in the field, with its windings perpendicular to the lines of force, and then suddenly reversed or withdrawn from the field, the integral electromotive force being twice as great in the first case as in the second. The strength of the field is proportional to the swing of the galvanometer-needle, and, when the galvanometer is calibrated, can be expressed in C.G.S. units. Convenient arrangements have been introduced whereby the coil is reversed or withdrawn from the field by the action of a spring.
Bismuth Resistance.—The fact, which will be referred to later, that the electrical resistance of bismuth is very greatly affected by a magnetic field has been applied in the construction of apparatus for measuring field intensity. A little instrument, supplied by Hartmann and Braun, contains a short length of fine bismuth wire wound into a flat double spiral, half an inch or thereabouts in diameter, and attached to a long ebonite handle. Unfortunately the effects of magnetization upon the specific resistance of bismuth vary enormously with changes of temperature; it is therefore necessary to take two readings of the resistance, one when the spiral is in the magnetic field, the other when it is outside.
Electric Circuit.—If a coil of insulated wire is suspended so that it is in stable equilibrium when its plane is parallel to the direction of a magnetic field, the transmission of a known electric current through the coil will cause it to be deflected through an angle which is a function of the field intensity.
One of the neatest applications of this principle is that described by Edser and Stansfield (Phil. Mag., 1893, 34, 186), and used by them to test the stray fields of dynamos. An oblong coil about an inch in length is suspended from each end by thin strips of rolled German silver wire, one of which is connected with a spiral spring for regulating the tension, the other being attached to a torsion-head. Inside the torsion-head is a commutator for automatically reversing the current, so that readings may be taken on each side of zero, and the arrangement is such that when the torsion-head is exactly at zero the current is interrupted. To take a reading the torsion-head is turned until an aluminium pointer attached to the coil is brought to the zero position on a small scale; the strength of the field is then proportional to the angular torsion. The small current required is supplied to the coil from a single dry cell. The advantages of portability, very considerable range (from H = 1 upwards), and fair accuracy are claimed for the instrument.
Polarized Light.—The intensity of a field may be measured by the rotation of the plane of polarization of light passing in the direction of the magnetic force through a transparent substance. If the field is uniform, H = θ/ωd, where θ is the rotation, d the thickness of the substance arranged as a plate at right angles to the direction of the field, and ω Verdet’s constant for the substance.
For the practical measurement of field intensity du Bois has used plates of the densest Jena flint glass. These are preferably made slightly wedge-shape, to avoid the inconvenience resulting from multiple internal reflections, and they must necessarily be rather thin, so that double refractions due to internal strain may not exert a disturbing influence. Since Verdet’s constant is somewhat uncertain for different batches of glass even of the same quality, each plate should be standardized in a field of known intensity. As the source of monochromatic light a bright sodium burner is used, and the rotation, which is exactly proportional to H, is measured by an accurate polarimeter. Such a plate about 1 mm. in thickness is said to be adapted for measuring fields of the order of 1000 units. A part of one surface of the plate may be silvered, so that the polarized ray, after having once traversed the glass, is reflected back again; the rotation is thus doubled, and moreover, the arrangement is, for certain experiments, more convenient than the other.