or

κ = I / H = a + bH,

whence it appears that within the limits of Baur’s experiments the magnetization curve is a parabola, and the susceptibility curve an inclined straight line, κ being therefore a known function of H. If these equations could be assumed to hold when H is indefinitely small, it would follow that κ has a finite initial value, from which there would be no appreciable deviation in fields so weak that bH was negligibly small in comparison with a. Such an assumption could not, however, without dangerous extrapolation, be founded upon the results of Baur’s experiments, which did not go far enough to justify it. In some experiments carried out in 1887, Lord Rayleigh (Phil. Mag., 1887, 23, 225) approached very much more nearly than Baur to the zero of magnetic force. Using an unannealed Swedish iron wire, he found that when H was gradually diminished from 0.04 to 0.00004 C.G.S. unit, the ratio of magnetization to magnetizing force remained sensibly constant at 6.4, which may therefore with great probability be assumed to represent the initial value of κ for the specimen in question. Experiments with annealed iron gave less satisfactory results, on account of the slowness with which the metal settled down into a new magnetic state, thus causing a “drift” of the magnetometer needle, which sometimes persisted for several seconds. Apart from this complication, it appeared that I was proportional to H when the value of H was less than 0.02.

The observations of Baur and Rayleigh have been confirmed and discussed by (amongst others) W. Schmidt (Wied. Ann., 1895, 54, 655), who found the limiting values of κ to be 7.5 to 9.5 for iron, and 11.2 to 13.5 for steel, remaining constant up to H = .06; by P. Culmann (Elekt. Zeit., 1893, 14, 345; Wied. Ann., 1895, 56, 602); and by L. Holborn (Berl. Ber., 1897, p. 95, and Wied. Ann., 1897, 61, 281). The latter gives values of the constants a and b for different samples of iron and steel, some of which are shown in the following table:—

κ = a + bH
Metal. a b
English tungsten steel 8.90 0.264
Tungsten steel, hardened 2.23 0.032
Silver steel 8.66 0.384
Tool steel 8.30 0.400
Refined steel 11.28  1.92 
Cast iron 3.16 0.236
Soft iron 16.6  18.6  
Hard drawn iron 5.88 1.76 

For most samples of steel the straight-line law was found to hold approximately up to H = 3; in the case of iron and of soft steel the approximation was less close.

The behaviour of nickel in weak fields has been observed by Ewing (Phil. Trans., 1888, 179A, 325), who found that the initial value of κ was 1.7, and that it remained sensibly constant until H had reached a value of about five units. While therefore the initial susceptibility of nickel is less than that of iron and steel, the range of magnetic force within which it is approximately constant is about one hundred times greater. Ewing has also made a careful study (Proc. Roy. Soc., 1889, 46, 269) of “magnetic viscosity” under small forces—the cause of the magnetometer “drift” referred to by Rayleigh. On the application of a small magnetizing force to a bar of soft annealed iron, a certain intensity of magnetization is instantly produced; this, however, does not remain constant, but slowly increases for some seconds or even minutes, and may ultimately attain a value nearly twice as great as that observed immediately after the force was applied.[30] When the magnetizing current is broken, the magnetization at once undergoes considerable diminution, then gradually falls to zero, and a similar sudden change followed by a slow one is observed when a feeble current is reversed. Ewing draws attention to a curious consequence of this time-lag. By the alternate application and withdrawal of a small magnetizing force a cyclic condition may be established in an iron rod. If now the alternations are performed so rapidly that time is not allowed for more than the first sudden change in the magnetization, there will be no hysteresis loss, the magnetization exactly following the magnetizing force. Further, if the alternations take place so slowly that the full maximum and minimum values of the magnetization are reached in the intervals between the reversals, there will again be no dissipation of energy. But at any intermediate frequency the ascending and descending curves of magnetization will enclose a space, and energy will be dissipated. It is remarkable that the phenomena of magnetic viscosity are much more evident in a thick rod than in a thin wire, or even in a large bundle of thin wires. In hardened iron and steel the effect can scarcely be detected, and in weak fields these metals exhibit no magnetic hysteresis of any kind.

6. Changes of Dimensions Attending Magnetization

Fig. 24.