[Continued from SUPPLEMENT, No. 1172, page 18764.]

THE DEVELOPMENT OF THE CENTRAL STATION.

By SAMUEL INSULL.[1]

The success of the low-tension system was followed by the introduction of the alternating system, using high potential primaries with the converters at each house, reducing, as a rule, from 1,000 down to either 50 or 100 volts. I am not familiar with the early alternating work, and had not at my disposal sufficient time in preparing my notes to go at any length into an investigation of this branch of the subject; nor do I think that any particular advantage could have been served by my doing so, as it has become generally recognized that the early alternating work with a house-to-house converter system, while it undoubtedly helped central station development at the time, proved very uneconomical in operation and expensive in investment, when the cost of converters is added to the cost of distribution. The large alternating stations in this country have so clearly demonstrated this that their responsible managers have, within the last few years, done everything possible, by the adoption of block converters and three-wire secondary circuits, to bring their system as close as they could in practice to the low-tension direct-current distribution system. I do not want to be understood as undervaluing the position of the alternating current in central station work. It has its place, but to my mind its position is a false one when it is used for house-to-house distribution with converters for each customer. The success of the oldest stations in this country, and the demonstration of the possibilities of covering areas of several miles in extent by the use of the three wire system, resulted in much capital going into the business. One of the earliest stations of a really modern type installed on either side of the Atlantic was built by the Berlin Electricity Works. The engineers of that station, while recognizing the high value of the distributing system, went back to Edison's original scheme of a compact direct-connected steam and electric generator, but with dynamos of the multipolar type designed and built by Siemens & Halske, of Berlin, the engines being of vertical marine type.

This was followed by the projecting in New York of the present Duane Street station, employing boilers of 200 pounds pressure, triple and quadruple expansion engines of the marine type, and direct-connected multipolar dynamos. Almost immediately thereafter, the station in Atlantic Avenue, Boston, somewhat on the same general design so far as contents is concerned, was erected. In 1891 a small station, but on the same lines, was projected for San Francisco, and in 1892 the present Harrison Street station of the Chicago Edison company was designed, and, benefiting by the experience of Berlin, New York and Boston, this station produces electric current for lighting purposes probably cheaper than any station of a similar size anywhere in this country.

It is not necessary for me to go into detail in explanation of the modern central station. You are all doubtless quite familiar with the general design, but if you will examine the detail drawings of the Harrison Street station, which I have brought with me, you will find that every effort has been made to provide for the economical production of steam, low cost of operating, good facilities for repairs and consequently low cost, and for permanency of service. You have but to go into any of the modern central stations in midwinter, to see them turning out anywhere from 10,000 to 80,000 amperes with a minimum of labor, to appreciate the fact that central station business is of a permanent and lucrative character.

To go back to the question of alternating currents, the work done in connection with the two-phase and three-phase currents and the perfection of the rotary transformer has resulted in introducing into central station practice a further means of economizing the cost of production—by concentration of power. According to present experience, it is (except in some extraordinary cases) uneconomical to distribute direct low-tension current over more than a radius of a mile and a half from the generating point. The possibility of transmitting it at a very high voltage, and consequently low investment in conductors, has resulted in the adoption of a scheme, in many of the large cities, of alternating transmission combined with low tension distribution. The limit to which this alternating transmission can be economically carried has not yet been definitely settled, but it is quite possible even now to transmit economically from the center of any of our large cities to the distant suburbs, by means of high potential alternating currents, distributing the current from the subcenter distribution by means either of the alternating current itself and large transformers for a block or district or else, if the territory is thickly settled, by means of a system of low-tension mains and feeders, the direct current for this purpose being obtained through the agency of rotary transformers.

There are various methods of producing the alternating current for transmission purposes. In some cases the generators are themselves wound for high potential; in others they are wound for 80 volts, and step-up transformers are used, carrying the current up to whatever pressure is desired, from 1,000 to 10,000 volts. In other cases dynamos are used having collector rings for alternating current on one side and a commutator for direct current on the other side of the armature, thus enabling you, when the peak in two districts of a city comes at two different times, to take care of this peak by means of the same original generating unit, furnishing direct low-tension current to the points near the central station and alternating current to the distant points. In other cases, where a small amount of alternating current is required on the transmission line, it has even been found economical to take direct current from a large unit, change it by means of a rotary transformer into alternating current, step up from 80 to, say, 2,000 volts, go to the distant point, and step down again to 80 volts alternating, and then convert again by means of a rotary transformer into low-potential direct current.

The introduction of alternating current for transmission purposes in large cities is probably best exemplified in the station recently erected in Brooklyn, where alternating current is produced and carried to distant points, and then used to operate series arc-light machines run by synchronous motors, the low-tension direct-current network being fed by rotary transformers, and alternating circuits arranged with block converters, and even in some cases separate converters for each individual customer in the scattered districts.