When the whole charge is thoroughly melted, it is again drossed; and in order to keep the lead in a thoroughly uniform condition, and prevent it setting solid on the top and the outside, a jet of steam is introduced.
To enable this steam to rise regularly in the working pot, a disk-plate is placed above the nozzle, which acts as a baffle-plate; and uniform distribution of the steam is the result. To quicken the formation of crystals, and thus hasten the operation, small jets of water are allowed to play on the surface of the lead.
This, it might be thought, would make the lead set hard on the surface; but the violent action of the steam acts in the most effectual manner in causing the regular formation of crystals. Owing to the ebullition caused by this action of the steam, small quantities of lead are forced up, and set on the upper edges and cover of the pot. From time to time the valve controlling the thin stream of water playing on the top of the charge is closed, and the workman, opening the doors of the cover in rotation, breaks off this solidified lead, which falls among the rest of the charge, and instantly becomes uniformly mixed with it.
Very little practice enables an ordinary workman to judge when two-thirds of the contents of the big pot are in crystals, and one-third liquid; and when he sees this to be the case, instead of ladling out the crystals ladleful by ladleful, as in the old Pattinson process, he taps out the liquid lead by means of two pipes, controlled by valves, the crystals being retained in the pot by means of perforated plates.
The liquid lead is run into large cone-shaped moulds on either side of the pot; and a wrought iron ring being cast into the blocks thus formed, they are readily lifted, when set, by the crane. To give some idea of the rapidity of the process, it may be mentioned that from the time the lead is melted and fit to work in the big pot, to the time that it is crystallized and ready for tapping, is, in the case of a 36 ton pot, from thirty-five to forty-five minutes; and the time required for tapping the liquid lead into the large moulds is about eight minutes.
Before the lead begins to crystallize, the upper pot is charged with lead of half the richness of that in the lower pot. Thus, when the liquid lead has been tapped out of the lower pot, it is replaced by a similar amount of lead of the same richness as the remaining crystals, by simply tapping the upper or melting pot, and allowing the contents to run among the crystals.
The same operation is repeated from time to time, until the crystals are so poor in silver that they are fit to be melted, and run into pigs for market.
The large blocks of partially worked lead are placed by the crane in a semicircle round it, and pass successively through the subsequent operations. The advantages of the steam process, as compared to the old six-ton Pattinson pots formerly used by the writer's firm, are: (1) a saving of two-thirds amount of fuel used; (2) the saving of cost of calcination of the lead to the extent of at least four-fifths of all that is used; (3) above all, a saving in labor to the extent of two-thirds. The process has its disadvantages, and these are a larger original outlay for plant, and a constant expense in renewals and repairs. This is principally caused by the breakage of pots; but with increased experience this item has been very much reduced during the last two or three years.
The "zinc process" of desilverizing, which is largely used by Messrs. Locke, Blackett & Co., and was patented in the form adopted by them about fourteen years since. The action of this process is dependent on the affinity of zinc for silver. The following is a brief description of it:
A charge of silver lead, usually about fifteen tons, is heated to a point considerably above that which is used in either the Pattinson or the steam process. The quantity of zinc added is regulated by the amount of silver contained in the lead; but for lead containing 50 oz. to the ton, the quantity of zinc used is in most cases about 1½ per cent, of the charge of lead. The lead being melted as described, a portion of this zinc, usually about half of the total quantity required for the charge, is added to the melted lead, and thoroughly mixed with it by continued stirring. The lead is now allowed to cool, when the zinc is seen gradually to rise to the top, having incorporated with it a large proportion of the silver. The setting point of zinc being above that of lead, a zinc crust is gradually formed, and this is broken up and carefully lifted off into a small pot conveniently placed, care being taken to let as much lead drain off as possible. The fire is again applied strongly to the pot, and when the lead is sufficiently heated, a further quantity of zinc, about one-third of the whole quantity used, is added, when the same process of cooling and removing the zinc crust is repeated. This operation is gone through a third time with the remaining portion--¼ per cent.--of zinc; and if each of these operations has been carefully carried out, the lead will be found to be completely desilverized, and will only show a very small trace of zinc. In some works this trace of zinc is allowed to remain in the market lead, but at Messrs. Locke, Blackett & Co.'s works it is invariably removed by subjecting the lead to a high heat in a calcining furnace. The zinc crusts, rich in silver, are freed as far as possible from the lead by allowing this to sweat out in the small pot, after which the crusts are placed in a covered crucible, where the zinc is distilled off, and a portion of it recovered. The lead remaining, which is extremely rich in silver, is then taken to the refinery, and treated in the usual manner. The writer is given to understand that the quantity of zinc recovered is as high as from 50 to 60 per cent. of the total quantity used.