These three types may be said to embrace all the engines now being manufactured in this country for the propulsion of steam vessels by the screw propeller. In their leading principles they also embrace nearly all paddle engines now being built, whether the cylinders be oscillating, fixed vertically, or inclined to the shaft.
The compound engine, in fact, in one of these three forms, may now be said to be universally adopted in this country; and the question of the relative value of simple expansion in one cylinder, and of compound expansion in two or more cylinders, which agitated the minds of some of our leading engineers ten years ago, is now practically solved in favor of the latter.
THE MARINE BOILER.
The marine boiler of to-day is in all its main features the same as it was ten years ago. The single-ended boiler, made with two, three, and sometimes four furnaces, is the simplest form, and for all powers under 500 indicated horse power is the most generally adopted. The double-ended form is largely used. It has been found more economically efficient than the single-ended form, by as much as ten per cent, in the writer's own experience. It is generally adopted for engines of large power, but for small power is inconvenient, owing to its occupying more room lengthwise in the vessel, and also involving two stokeholds and therefore more supervision. At one time great difficulty was found in keeping the bottoms of boilers of this kind tight. Owing to their length, the unequal expansion due to different temperatures at the top and bottom caused severe racking strains on the bottom seams and riveting--so severe in some cases as to rend the plating for a large part of the bottom circumference of the shell. This difficulty has now been to a large extent got over, in consequence of the greater attention given to the form and direction of the water spaces in the boiler itself, so as to induce circulation of water; the introduction of the feed-water at the top instead of near the bottom; the more careful management now usual on the part of engineers; and lastly, the use of larger plates, welded horizontal seams, drilled rivet holes, and more perfect workmanship throughout. A modification of double-ended boiler is that introduced by Mr. Alfred Holt. It has many decided advantages, but is costly to make. The formation of the two ends into separate fire-boxes leaves the bottom of the boiler free to adapt itself to the variations of temperature to which it is exposed. The separation of the furnaces from the combustion chamber, excepting through the opening afforded by a connecting tube, is an advantage in the same direction, and avoids almost entirely the racking strains due to irregular furnace action. The weight of water carried is less, and that of the boiler may also be made less; while the elliptical form of the two ends gives greater steam space.
A type of boiler largely used in her Majesty's Navy, somewhat like a locomotive boiler, is highly efficient in regard to weight and power developed. Many examples have yielded one indicated horse-power in the cylinders for every three square feet of heating surface, under natural draught and with a very moderate height of funnel; and this with a consumption of fuel not exceeding 2½ lb. per indicated horse-power per hour under a working pressure of 60 lb. With the aid of a steam jet in the funnel, the heating surface per indicated horse-power has fallen below 2½ square feet. The large water surface afforded for escape of steam secures almost entire freedom from priming, without the incumbrance of steam domes; and the large combustion chamber allows of the thorough combustion of the gases before their passage through the tubes. The locomotive type of boiler has lately occupied the writer's attention, with a view to its more definite introduction into marine work. The difficulties, however, which lie in the way of applying it to steamers going long voyages are very great. The principal difficulty lies in the necessity of burning a large quantity of fuel in a very limited space and time. This can only be done either by direct pressure or exhaust action applied at the furnace. In other words, we must either exhaust the funnel, which will absorb a large amount of power, but would be comparatively easy of application; or our stokers, as is the case with our miners, must work under a pressure of air.
STEEL BOILERS.
The writer stated that his experience in the manufacture and working of steel boilers was satisfactory. Many steel boilers of sizes varying from six feet diameter to fourteen feet six inches diameter have left the works at St. Peter's since 1877, when the first was made; and in no case has there been a failure of a plate after being put into a boiler, either in the process of manufacture or in working at sea. The mode of working is as follows: For shell plates, from five-eighths inch to seven-eighths inch thick, to warm each to a dark red heat before rolling, having previously drilled a few holes to template for bolting the strakes together; the longitudinal seams are usually lap joints treble riveted, requiring the corners to be thinned, which is done after rolling. The furnace plates are generally welded two plates in length, and flanged to form Adamson rings, and at the back end to meet the tube plate; the back flame-box plates are flanged, also the tube plates and front and back plates; and wherever work is put on to the plate it is annealed before going into the place. The rivet holes are drilled throughout. In the putting together the longitudinal seams of the thicker plates of the shells, great care is always taken to set the upper and under plates for the lap to their proper angle before they are bolted together, a point generally overlooked by the practical boilersmith.
CORROSION OF BOILERS.
The question of corrosion is one which is gradually being answered as time goes on; and so far very satisfactorily for steel. Some steel boilers were examined a few weeks ago which were among the first made; and the superintending engineer reports: "There is no sign of pitting or corrosion in any part of the boiler; the boilers are washed out very carefully every voyage, and very carefully examined, and I cannot trace anything either leaking or eating away. No zinc is used, only care in washing out, drying out, and managing the water." This is the evidence of an engineer with a large number of vessels in his charge. On the other hand, some of the most prominent Liverpool engineers always use zinc, and take care to apply it most strictly. The evidence of one of them is as follows: "We always fix slabs of zinc to most boilers, exposing not less than a surface of one square foot for every twenty indicated horse-power, and distributed throughout the boiler. This zinc we find to be in a state of oxide and crumbling away in about three months. We then renew the whole, and find this will last twelve months or more, when it is renewed again. Meanwhile we have no pitting and no corrosion; but on the contrary, the interior surfaces appear to have taken a coating of oxide of zinc all over, and we have no trouble with them."