The vessel or barge for carrying the machinery and pumps cost £600, and the contract price of the machinery and pumps was £1,200. But before the dredger was taken over by the company the alterations before enumerated had cost about £300, bringing the total for barge and dredger up to £2,100. In building a second dredger this might of course be greatly reduced. The cost of repairs for one month's working has been only £5. The contractor receives for labor alone 1-1/8d. per ton, being at the rate of about 1¾d. for the dredging and 3/8d. for taking to sea--a lead of two miles--all materials being supplied to him. The consumption of coal is at the rate of about 1 ton for 1,000 tons of sand dredged. At Lowestoft Harbor the total amount of dredging has been about 200,000 tons yearly, but this is now much reduced in consequence of the pier extension recently constructed by the author, which now prevents the sand and shingle from the sea blocking the mouth of the harbor. The total cost of working has been 2.572d. per ton. which with 10 per cent interest on capital, 0.240d., makes the total cost per ton 2.812d. The repairs to steam tug, hopper, barges, and dredger have averaged about 2d. per ton.

Before the discussion on the paper commenced, Mr. Langley remarked that attempts had been made to connect the engine direct to the pump of a Bazin dredger, but this arrangement failed, and the belt acted as a safety arrangement and prevented breakage by slipping when the pump was choked in any way. A new lock was constructed near Lowestoft a short time ago, and the dredger pump was used to empty it; when half empty the men placed a net in front of the delivery pipe and caught a cartload of fish, many of which where uninjured. In the discussion Mr. Wallick, who had superintended the use of the dredger at Lowenstoft, gave some of his experience there, and repeated the information and opinions given by Mr. Langley in the paper.

Mr. Ball, London agent for M. Bazin, said that as devised by M. Bazin the pump was placed below water level, so that the head of water outside should be utilized; but he--Mr. Ball--now placed the pump considerably above water level, as no specially formed craft was thus necessary. He also described some of the steps by which he had arrived at the present arrangements of the whole plant, and gave some particulars of its working. Mr. Crampton asked some questions, in reply to which Mr. Ball said the longest distance they had carried the material was 1,200 yards in two relays--namely, a second pump on a floating barge with special engine. The distance to which they could carry the material depended upon its character. Fine sand would travel well; mud would not, bowlders would not, though gravel would. To give the water a rotary motion he had inserted a helical piece of angle iron, and so prevented deposition.


DANGER FROM LIGHTNING IN BLASTING.

Although the accident in the tunnel in process of construction at Union Hill by the New York, Ontario, and Western Railroad Company, which took place on Tuesday afternoon, was happily attended with no loss of life or serious injuries to the men employed in the shaft, it reads a new lesson as to the firing of charges of powder by electricity, and one that should be carefully noted by railway and civil engineers, and even by the torpedo service of the United States. The exact cause of the explosion has scarcely been fully and accurately set forth by the various reports of the affair.

It appears that the wires usually employed lo supply the electric lamps in the excavation were used for the purpose of firing the charges, being disconnected from the electric light system for the moment and connected with the explosives. As a rule, six charges were fired together, those of the afternoon relay of men being exploded at very regular hours--the last usually at 5:45 P.M. There were only sixteen men in the shaft, and the work of connecting the wires had commenced, when the flash of lightning that occurred at 5:42 P.M., suddenly charged the conductors and produced the explosion.

There were two flashes of lightning between the hours of 5 and 6 o'clock Tuesday afternoon, the first taking place at 5:23, and the second nineteen minutes later. The former, according to testimony elicited by our reporter, simply caused a slight perturbation of the lights in the tunnel, but did not extinguish them. Five minutes later the work of disconnection and reconnection began, but only two of the six charges were ready for the pressure of the button when the last flash interrupted the proceedings. The fact that the time of the explosion corresponded to the second with that of the aerial electrical discharge furnishes indubitable evidence that the accident was not caused by any carelessness on the part the electrician in charge, and exonerates all parties from blame. At the same time it should be remembered by engineers in of such work that atmospheric electricity cannot be altogether disregarded in such cases, and that as a source of accident it may at any time prove dangerous. The concurrence of circumstances on Tuesday was particularly fortunate. In the first instance only two of the six charges had been connected with the firing battery, and in the second the rock in which the charges were inserted was so peculiarly soft and porous as to deaden the force of the eight pounds of giant powder thus prematurely set off. Had the cartridges been set in the harder and more solid rock of the east heading, instead of the west, and the explosion taken place there, probably not a man in the shaft would have escaped destruction. The lesson to engineers is one of no less importance than if the whole number of men had been killed, and should lead to the exercise of great care and precaution at times when the air is charged with electrical energy.--New York Times.