The longitudinal or end strength varies: thus, in the German guns, the tube and hoops do nothing--the jacket is considered sufficient. The French construction relies entirely on the thick body, while the English method aims at utilizing the whole section of the gun, both ways. Of course, if the others are strong enough, there is no particular advantage in this; and it is by no means improbable that eventually we shall find it cheaper, and equally good, to substitute hoops for the "overcoat."
I fear I have detained you a long time over construction, but it is both instructive and interesting to note that certain well defined points of contact now exist between all the great systems. Thus, a surface of steel inside the bore is common to all, and the general use of steel is spreading fast. Shrinkage, again, is now everywhere employed, and such differences as still exist are matters rather of detail than of principle, as far as systems of construction are concerned.
We now come to a part of the question which has long been hotly debated in this country, and about which an immense quantity of matter has been both spoken and written on opposite sides--I mean muzzle loading and breech-loading. The controversy has been a remarkable one, and, perhaps, the most remarkable part of it has been the circumstance that while there is now little doubt that the advocates of breech-loading were on the right side, their reasons were for the most part fallacious. Thus, they commonly stated that a gun loaded at the breech could be more rapidly fired than one loaded at the muzzle. Now, this was certainly not the case, at any rate, with the comparatively short guns which were made on both systems a few years ago. The public were acquainted with breech-loaders only in the form of sporting guns and rifles, and argued from them. The muzzle-loading thirty eight ton guns were fired in a casemate at Shoeburyness repeatedly in less than twenty minutes for ten rounds, with careful aiming. No breech-loader of corresponding size has, I think, ever beaten that rate. With field-guns in the open, the No. 1 of the detachment can aim his muzzle loader while it is being loaded, while he must wait to do so till loading at the breech is completed. Again, it was freely stated that, with breech-loaders greater protection was afforded to the gunners than with the muzzle-loaders. This entirely depends on how the guns are mounted. If in siege works or en barbette, it is much easier to load a muzzle loader under cover than a breech-loader. But I need not traverse the old ground all over again. It is sufficient for me to say here, that the real cause which has rendered breech-loading an absolute necessity is the improvement which has been made in the powder. You witnessed a few minutes ago the change which took place in the action of fired gunpowder when the grains were enlarged. You will readily understand that nearly the whole of a quick burning charge was converted into gas before the shot had time to start; suppose for the moment that the combustion was really instantaneous. Then we have a bore, say sixteen diameters long, with the cartridge occupying a length of, say, two diameters.
The pressure of the gas causes the shot to move. The greater the pressure, the greater the impulse given. As the shot advances, the pressure lessens; and it lessens in proportion to the distance the shot proceeds. Thus, when the shot has proceeded a distance equal to the length of the cartridge, the space occupied by the gas is doubled, and its original pressure is halved. As the shot travels another cartridge length, the space occupied by the gas is trebled, and its pressure will be but one-third of the original amount. When the shot arrives at the muzzle--that is, at eight times the length of the cartridge from the breech--the pressure will be but one ninth of that originally set up. Remember, this is on the supposition that the powder has been entirely converted into gas before the shot begins to move.
Now, suppose the powder to be of a slow-burning kind, and assume that only one-third of it has been converted into gas before the shot starts, then the remaining two-thirds will be giving off additional gas as the shot travels through the bore. Instead, therefore, of the pressure falling rapidly, as the shot approaches the muzzle, the increasing quantity of gas tends to make up for the increasing space holding it. You will at once perceive that the slower the combustion of the powder the less difference there will be in the pressure exerted by the gas at the breech and at the muzzle, and the greater will be the advantage, in point of velocity, of lengthening the bore, and so keeping the shot under the influence of the pressure. Hence, all recent improvement has tended toward larger charges of slower burning powder, and increased length of bore. And it is evident that the longer the bore of the gun, the greater is the convenience of putting the charge in behind, instead of having to ram it home from the front. I may here remark, that the increased length of gun necessary to produce the best effect is causing even those who have possessed breech-loaders for many years to rearm, just as completely as we are now beginning to do. All the old short breech loading guns are becoming obsolete. Another great advantage of breech-loading is the facility afforded for enlarging the powder chamber of the gun, so that a comparatively short, thick cartridge may be I employed, without any definite restriction due to the size of the bore.
There is yet one more point in which breech-loading has recently been found, in the Royal Gun Factory, to possess a great advantage over muzzle-loading as regards ballistic effect. With a shot loaded from the front, it is clear that it must be smaller all over than the bore, or it would not pass down to its seat. A shot thrust in from behind, on the contrary, may be furnished with a band or sheath of comparatively soft metal larger than the bore; the gas then acting on the base of the projectile, forces the band through the grooves, sealing the escape, entering the projectile, and, to a great extent, mitigating the erosion of surface. This is, of course, universally known. It is also pretty generally known among artillerists that the effect of the resistance offered by the band or sheathing on the powder is to cause more complete combustion of the charge before the shot moves, and therefore to raise the velocity and the pressure. But I believe it escaped notice, till observed in May, 1880, in the Royal Gun Factory, that this circumstance affords a most steady and convenient mode of regulating the consumption of the charge, so as to obtain the best results with the powder employed.
Supposing the projectile to start, as in a muzzle loader, without offering any resistance beyond that due to inertia, it is necessary to employ a powder which shall burn quickly enough to give off most of its gas before the shot has proceeded far down the bore; otherwise the velocity at the muzzle will be low. To control this comparatively quick burning powder, a large air space is given to the cartridge, which, therefore, is placed in a chamber considerably too big for it. Supposing, on the other hand, the projectile to be furnished with a stout band, giving a high resistance to initial motion, a much slower powder can be used, since the combustion proceeds as if in a closed vessel, until sufficient pressure is developed to overcome the resistance of the band. This enables us to put a larger quantity of slower burning powder into the chamber, and in fact to use, instead of a space filled with air, a space filled with powder giving off gas, which comes into play as the projectile travels down the bore. Thus, while not exceeding the intended pressure at the breech, the pressure toward the muzzle is kept up, and the velocity very materially increased. Following this principle to this conclusion, it will be found that the perfect charge for a gun will be one which exactly fills the chamber, and which is composed of a powder rather too slow to give the pressure for which the gun is designed, supposing the shot to move off freely. The powder should be so much too slow as to require for its full development the holding power of a band which is just strong enough to give rotation to the shot.
Having settled that the gun of the future is to be a breech-loader, we have next to consider what system of closing the breech is to be adopted.
The German guns are provided with a round backed wedge, which is pushed in from the side of the breech, and forced firmly home by a screw provided with handles; the face of the wedge is fitted with an easily removable flat plate, which abuts against a Broad well ring, let into a recess in the end of the bore. On firing, the gas presses the ring firmly against the flat plate, and renders escape impossible as long as the surfaces remain uninjured. When they become worn, the ring and plate can be exchanged in a few minutes. Mr. Vavasseur, of Southwark, constructs his guns on a very similar plan. In the French guns, and our modern ones, the bore is continued to the rear extremity of the piece, the breech end forming an intermittent screw, that is, a screw having the threads intermittently left and slotted away. The breech block has a similarly cut screw on it, so that when the slots in the block correspond with the untouched threads in the gun, the block can be pushed straight in, and the threads made to engage by part of a revolution. In the French Marine the escape of gas is stopped very much as in Krupp's system; a Broadwell ring is let into a recess in the end of the bore, and a plate on the face of the breech-block abuts against it.
In the French land service the escape is sealed in quite a different manner. A stalk passes through the breech-block, its foot being secured on the exterior. The stalk has a mushroom-shaped head projecting into the bore. Round the neck of the stalk, just under the mushroom, is a collar of asbestos, secured in a canvas cover; when the gun is fired, the gas presses the mushroom against the asbestos collar, and squeezes it against the walls of the bore. It is found that this cuts off all escape.