Fig. 2.
NOVELTIES IN RING SPINDLES.
One of the drawbacks of ring spinning is the uneven pull of the traveler, which is the more difficult to counteract as it is exerted in jerks at irregular intervals. It is argued that with spindles and bearings as usually made the spindle is supported firmly in its bearing, and cannot give in case of such a lateral pull when exerted through the yarn by the traveler, and the consequence is either a breakage of the yarn or an uneven thread. Impressed with this idea, and in order to remedy this defect, an eminent Swiss firm has hit upon the notion of driving the spindle by friction, and to make it more or less loose in the bearings, so that in case of an extra pull by the traveler the spindle can give way a little, and thus prevent the breakage of the yarn. This idea has been carried out in four different ways, and as this seems to be an entirely new departure in ring spinning, we give the illustrations of their construction in detail.
Fig. 1. Fig. 2. Fig. 3. Fig. 4.
Fig. 1 represents Bourcart's recent arrangement of attaching the thread guide to the spindle rail and the adjustable spindle. The spindle is held by the sleeve, g, which latter is screwed into the spindle rail, S, this being moved by the pinion, a; the collar is elongated upwards in a cuplike form, c, the better to hold the oil, and keep it from flying; d is the wharf, which has attached to it the sleeve, m, and which is situated loosely in the space between the spindle and the footstep, e. Above the wharf the spindle is hexagonal in shape, and to this part is attached the friction plate, a. Between the latter and the upper surface of the wharf a cloth or felt washer is inserted, to act as a brake. The footstep, e, is filled with oil, in which run the foot of the spindle and the sleeve m, the latter turning upon a steel ring situated on the bottom of the footstep. As, thus, the foot of the spindle is quite free, the upper part of the spindle can give sideways in the direction of any sudden pull, and the foot of the spindle can follow this motion in the opposite direction, the collar forming the fulcrum for the spindle. By this alteration of the vertical position of the spindle into an inclined one (though ever so trifling), the contact of the friction plate, a, and the wharf is interrupted, and thus the speed of the spindle reduced. This will cause less yarn to be wound on, and the pull thus to be neutralized; but as the wharf keeps turning at the same speed, its centrifugal force will act again upon the friction plate, and thus bring the spindle back to its vertical position as soon as the extra drag has been removed.
In Fig. 2 the footstep, e, has the foot of the spindle more closely fitting at the bottom, but the upper part of the step opens out gradually, and forms a conical cavity of a little larger diameter than the spindle, so that the latter has a considerable play sideways. The wharf carries in its lower part the sleeve, g, which runs upon a steel ring as above. The upper surface of the wharf is arched, and upon this is fitted the correspondingly arched friction plate, a, which latter is attached to the spindle by a screw. The position of the spindle is maintained by the collar, m. This collar is loose in the spindle rail, and only held by the spring, m'. If now, a lateral drag is exerted upon the upper part of the spindle, the collar car follows the direction of this drag, and the spindle thus be brought out of the vertical position, the friction plate slipping at the same time. The force of the spring conjointly with the centrifugal force will then bring back the spindle into its normal position as soon as the drag is again even.