These researches were summed up in the journal La Lumière Electrique for June 15, 1879. Recently, Mr. Pilleux has addressed to us some new experiments on the same subject, made on the voltaic arc produced by a De Meritens alternating current machine. Naturally, he has found the same phenomena that I had made known; but he thinks that these new researches are worthy of interest by reason of the nature of the arc in which he experimented, and which, according to him, is of a different nature from all those on which, up to the present time, experiments have been made. Such a distinction as this, however, merits a discussion.

With the induction spark, magnets have an action only on the aureola which accompanies the line of fire of the static discharge; and this aureola, being only a sort of sheath of heated air containing many particles of metal derived from the rheophores, represents exactly the voltaic arc.

FIG. 2

Moreover, although the induced currents developed in the bobbin are alternately of opposite direction, the galvanometer shows that the currents that traverse the break are of the same direction, and that these are direct ones. The reversed currents are, then, arrested during their passage; and, in order to collect them, it becomes necessary to considerably diminish the gaseous pressure of the aeriform conductor interposed in the discharge; to increase its conductivity; or to open to the current a very resistant metallic derivation. By this latter means, I have succeeded in isolating, one from the other, in two different circuits, the direct induced currents and the reversed induced ones. As only direct currents can, in air at a normal pressure, traverse the break through which the induction spark passes, the aureola that surrounds it may be considered as being exactly in the same conditions as a voltaic arc, and, consequently, as representing an extensible conductor traversed by a current flowing in a definite direction. Such a conductor is consequently susceptible of being influenced by all the external reactions that can be exerted upon a current; only, by reason of its mobility, the conductor may possibly give way to the action exerted upon the current traversing it, and undergo deformations that are in relation with the laws of Ampère. It is in this manner that I have explained the different forms that the aureola of the induction spark assumes when it is submitted to the action of a magnet in the direction of its axial line, or in that of its equatorial line, or perpendicular to these latter, or upon the magnetic poles themselves.

Experiments of a very definite kind have not yet been made as to the nature of the arc produced by induced currents developed in alternating current machines; but, from the experiments made with electric candles, we are forced to admit that the current reacts as if it were alternately reversed through the arc, since the carbons are used up to an equal degree; and, moreover, Mr. Pilleux's experiments show that effects analogous to those of induction coils are produced by the reaction of magnets upon the arc. There is, then, here a doubtful point that it would be interesting to clear up; and we believe that it is consequently proper to introduce in this place Mr. Pilleux's note:

"Having at my disposal," says he, "a powerful vertical voltaic arc of 12 centimeters in length, kept up by alternately reversed currents, and one of the most powerful permanent magnets that Mr. De Meritens employs for magneto-electric machines, I have been enabled to make the following experiments:

"1. When I caused one of the poles of my magnet to slowly approach the voltaic arc, I ascertained that, at a distance of 10 centimeters, the arc became flattened so as to assume the appearance of those gas jets called 'butterfly.' The plane of the 'butterfly' was parallel with the pole that I presented, or, in other words, with the section of the magnet. At the same time, the arc began to emit a strident noise, which became deafening when the pole of the magnet was brought to within a distance of about 2 millimeters. At this moment, the butterfly form produced by the arc was greatly spread out, and reduced to the thickness of a sheet of paper; and then it burst with violence, and projected to a distance a great number of particles of incandescent carbon.

"2. The magnet employed being a horseshoe one, when I directed it laterally so as to present successively, now the north and then the south pole to the arc, the 'butterfly' pivoted upon itself so as not to present the same surface to each pole of the magnet."

By referring to the accompanying figure, which we extract from our note on the Ruhmkorff apparatus, it will be seen that the aureola which developed as a circular film from right to left at D, on the north pole of the magnet, N.S. (Fig. 1), projected itself in an opposite direction at C, upon the south pole, S, of the same magnet; but, between the two poles, these two contrary actions being obliged to unite, they gave rise in doing so to a very characteristic helicoid spiral whose direction depended upon that of the current of discharge through the aureola, or upon the polarity of the magnetic poles. On the contrary, when the discharge took place in the direction of the equatorial line, as in Fig. 2, the circular film developed itself in the plane of the neutral line above or below the line of discharge, according to the direction of the current and the magnetic polarity of the magnet.