Action of Hot Acids.--This very important test is never, like the above, applicable upon the field, but applied when home is reached. From the body of the mineral as pure and clean as possible a portion is chipped, about the size of a small pea; this is wrapped in a piece of stiff wrapping paper, and after placing it in contact with a solid body, crushed finally by a blow from the hammer. A pinch of the powder so obtained is taken up on the point of a penknife, and transferred into a test tube. Two or more of these should be provided, about six inches long. They may be obtained in the apparatus shop for a trifle. Some hydrochloric, or, as it is generally called, muriatic acid, is poured upon it to the depth of about three quarters of an inch; the tube is then placed in some boiling water heated over a lamp in a tinned or other vessel, and allowed to boil for from ten to fifteen minutes; the tube is then removed and its contents allowed to cool, and then examined. If the powder has all disappeared, we term the mineral "soluble;" if more or less is dissolved, "partly soluble;" if none, "insoluble;" and if the contents of the tube are of a solid transparent mass like jelly, "gelatinous;" while if transparent gelatinous flakes are left, it is so termed. As this method of distinguishment is always applicable, it is very important, and its detail and result should be carefully noticed. Care should be taken that only a small portion of the mineral is used, and also but little acid; the action should be observed, and is frequently a characteristic, in the case with calcspar, which effervesces while dissolving. The acid used is hydrochloric at first, and then, if the mineral cannot he recognized, the same treatment may be repeated using nitric acid. Both of these acids should be at hand and two ounces are generally sufficient.
Action of Heat.--This is, perhaps, the most important characteristic, and, when taken with the preceding data, will identify any of the minerals found in any one locality, which I will describe, from each other. The heat is applied to the mineral by means of a candle and blowpipe. A thick wax candle answers well, and an ordinary japanned tin blowpipe, costing twenty cents, will serve the purpose. The substance to be examined is held on a loop of platinum wire about one inch to the left and just below the top of the wick, which is bent toward it. Here it is steadily held, as is shown in Fig. 1, and the flame of the candle bent over upon it, and the heat intensified by blowing a steady and strong current of air across it by means of the blowpipe held in the mouth and supported by the right hand, whose elbow is resting upon the table. The current of air is difficult to keep up by one unaccustomed to the blowpipe, the skill of using which is readily obtained; it consists in breathing through the nostrils, while the air is forced out by pressure on the air held by the inflated cheeks, and not from the lungs. This can be practiced while not using the blow-pipe, and may readily be accomplished by one's keeping his cheeks distended with air and breathing at the same time.
This heat is steadily applied until the splinter of mineral has been kept at a high red heat for a sufficient length of time to convince one of what it may do, as fuse or not, or on the edges. The first two are evident, as when it fuses it runs into a globule; the last, by inspecting it before and after the heating with a magnifying glass; sometimes it froths up when heated, and is then said to "intumesce;" or, if it flies to fragments, "decrepitates." Upon the first it is further heated; but in the latter case, a new splinter of mineral must be broken off from the mass and heated upon the wire very cautiously until quite hot, when it may then be readily heated further without fear of loss. For holding the splinter of mineral, which should well represent the mass and be quite small, is a three-inch length of platinum wire of the thickness of a cambric-needle; this may be bought for about ten cents at the apparatus shop. The ends should be looped, as is shown in Fig. 2, and the mineral placed in the loop.
Sometimes a mineral has to be fused with borax, as I mention further on in my tables. This is done by heating the wire-loop to redness, and plunging it into some borax; what adheres is fused upon it by heating. Some more is accumulated in the same manner, until the loop is filled with a fair-sized globule. A small quantity of the mineral, which had been crushed as for the acid test, is caused to adhere to it while it is molten, and then the heat of the blast directed upon it for some time until either the small fragments of mineral dissolve, or positively refuse to do so. After cooling, the aspect of the globule is noticed as to color, transparency, etc. Care must be taken that too large an amount of the mineral is not taken, a very minute amount being sufficient.
I trust by the use of these distinguishing reactions one will be able to recognize by the tables to be given the name of the mineral in hand, especially as they are from certain parts, where all the minerals occurring therein are known to us; and I have worded the characteristics so that they will serve to isolate from all that possibly could be found in that locality.
The first general locality is Bergen Hill, New Jersey. This comprises the range of bluffs of trap rock commencing at Bergen Point and running up behind Jersey City and Hoboken, etc., to the part opposite about Thirtieth Street, New York, where it comes close to the river, and from there along the river to the north for a long distance, known as the Palisades. It is about a mile wide on an average, and from a few feet to about two hundred feet in height. The mineralogical localities in and upon it are at the following parts, commencing at the south: First Pennsylvania Railroad cuts where the mining operations are just about completed; then the Erie Tunnel, in which the specimens that first made Bergen Hill noted as a mineralogical locality, and whose equals have not since been procured, were found, but which is now inaccessible to the general public. Further north is the Morris and Essex Tunnel, in which many fine specimens were secured, and is also inaccessible; and last, but far from being least, is the Ontario Tunnel at Weehawken; and, as it is the only practicable part besides the Pennsylvania Railroad and a number of surface outcrops which I will mention, I will commence with that.
The Weehawken Tunnel--This tunnel is now being cut through the trap-rock for the New York, Ontario, and Western Railroad, and will be completed in a few months, but will, probably, be available as a mineralogical locality for a year to come. It is located about half a mile south of the Weehawken Ferry from Forty-second Street, New York city, and the place where to climb upon the hill to get to the shafts leading to it is made prominent by the large body of light-colored rock on the dump, a few rods north of where the east entrance is to be. The western end is in the village of New Durham, on the New Jersey Northern Railroad, and recognized by the immense earth excavations. A pass is necessary to gain admittance down the shafts, and this can be procured from the office of the company, between the third and fourth shafts to the tunnel, in the grocery and provision store just to the north of the tramway connecting the shafts on the surface. As it will not be necessary to go down in any of the shafts besides the first and second in order to fulfill the objects of this paper, no difficulty need be encountered in procuring the pass if this is stated.
These two shafts are about eight hundred feet apart and one hundred and seventy feet deep. A platform elevator is the mode of access to the tunneled portion below, and a free shower-bath is included in the descent; consequently, a rubber-coat and water tight boots are necessary. A pair of overalls should be worn if one is to engage in any active exploration below; candles should also be provided, as the electric lights, at the face of the headings, give but little light, and remind one very forcibly of a dim flash light with a foliaged tree in front of it. The electric wires for supplying these arrangements run along the north side of the tunnel for those on the east headings, and on the south side for the west. They are excellent things to keep clear of, as they have sufficient current passing through them to knock one down; thus their position can be readily ascertained.
Modes of Occurrence of the Minerals.--In general, the greater number of the specimens which are to be found in the tunnel occur in veins generally perpendicular, and with other minerals of little or no value, as calcite, chlorite, and imperfect crystals of the same mineral. A few occur in nodules inclosed in the solid body of rock, and in which condition they are seldom of value. The greater abundance are in the veins of the dark-green soft chlorite, and some few in horizontal beds. The minerals are found in the first condition by examining all the veins running from floor to ceiling of the tunnel. The ores of calcite first mentioned are very conspicuous, they being white in the dense black rock. They may be chipped from, as there are about thirty or forty of them exposed in each shaft, and the character of the minerals examined to see if anything but calcite is in it. This is ascertained by a drop of acid, as explained before, and by the descriptions given further on. The veins of chlorite are not so conspicuous, being of a dark-green color; but by probing along the walls with a stick or hammer, they may be recognized by their softness, or by its dull glistening appearance. They are comparatively few, but from an inch to three feet wide; and minerals are found by digging it out with a stick or a three-foot drill, to be had at the headings. Where the most minerals occur in the chlorite is when plenty of veins of calcite are in its vicinity, and its edges near the trap are dry and crumbly. It is here where the minerals are found in this crumbly chlorite, and generally in geodes--that is, the faces of the minerals all point inward, formerly a spherical mass--rough and uncouth on the outside, and from half an inch to nearly a foot in diameter. These are valuable finds, and well worth digging for. The beds of minerals generally are of but one species, and will be mentioned under the head of the minerals occurring in them. Besides, in the tunnel there are generally more or less perfect minerals upon the main dump over the edge of the bluff toward the river. Here many specimens that have escaped the eyes of the miners may be found among the loose rock, being constantly strewn out by the incline of the bed; in fact, this is the only place in which quite a number of the incident minerals may be found; but I will not linger longer on this, as I shall refer to it under the minerals individually.
The minerals occurring at the tunnel are as follows, with their descriptions and locations in the order of their greatest abundance: