Assuming that the mill owner estimates his capital as worth to him ten per cent, per annum, then the improvement which would effect the above mentioned saving must not cost more than six thousand dollars, and so on. If, instead of being run only ten hours per day, the engine is run night and day, then the outlay which it would be justifiable to make to effect a certain saving per hour would be doubled; while, on the other hand, if an engine is run less than the usual time per day a given saving per hour would justify a correspondingly less outlay.
It has been found that for grain and other elevators, which are not run constantly, gas engines, although costing more for the same power, are cheaper than steam engines for elevating purposes where only occasionally used.
For this reason it is impossible without considerable investigation to say what is really the most economical engine to adopt in any particular case; and as comparatively few users of steam power care to make this investigation a vast amount of wasteful expenditure results. Although, however, no absolute rule can be given, we may state that the number of instances in which an engine which is wasteful of fuel can be used profitably is exceedingly small. As a rule, in fact, it may generally be assumed that an engine employed for driving a manufactory of any kind cannot be of too high a class, the saving effected by the economical working of such engines in the vast majority of cases enormously outweighing the interest on their extra first cost. So few people appear to have a clear idea of the vast importance of economy of fuel in mills and factories that I perhaps cannot better conclude than by giving an example showing the saving to be effected in a large establishment by an economical engine.
I will take the case of a flouring mill in this city which employed two engines that required forty pounds of water to be converted into steam per hour per indicated horse-power. This, at the time, was considered a moderate amount and the engines were considered "good."
These engines indicated seventy horse power each, and ran twenty-four hours per day on an average of three hundred days each year, requiring as per indicator diagrams forty million three hundred and twenty thousand pounds (40 x 70 x 24 x 300 x 2 = 40,320,000) of feed water to be evaporated per annum, which, in Philadelphia, costs three dollars per horse-power per annum, amounting to (70 x 2 x 300 = $420.00) four hundred and twenty dollars.
The coal consumed averaged five and one-half pounds per hour per horse-power, which, at four dollars per ton, costs
((70 x 2 x 5.5 x 24 x 300) / 2,000) x 4.00= $11,088
Eleven thousand and eighty-eight dollars.
Cost of coal for 300 days. $11,088
Cost of water for 300 days. 420
-------
Total cost of coal and water. $11,503
These engines were replaced by one first-class automatic engine, which developed one hundred and forty-two horse-power per hour with a consumption of three pounds of coal per hour per horse-power, and the indicator diagrams showed a consumption of thirty pounds of water per hour per horse-power. Coal cost