Most animal-tissue decomposes with great rapidity, and plant tissue, when not protected, soon decays. This decay is essentially oxidation, since its final result is the restoration to the atmosphere of carbonic acid, which is broken up in plant-growth by the appropriation of its carbon. Hence it is a kind of combustion, although this term is more generally applied to very rapid oxidation, with the evolution of sensible light and heat. But, whether the process goes on rapidly or slowly, the same force is evolved that is absorbed in the growth of plant-tissue; and by accelerating and guiding its evolution, we are able to utilize this force in the production at will of heat, light, and their correlatives, chemical affinity, motive power, electricity, and magnetism. The decomposition of plants may, however, be more or less retarded, and it then takes the form of a destructive distillation, the constituents reacting upon each other, and forming temporary combinations, part of which are evolved, and part remain behind. Water is the great extinguisher of this as of the more rapid oxidation that we call combustion; and the decomposition of plant-tissue under water is extremely slow, from the partial exclusion of oxygen. Buried under thick and nearly impervious masses of clay, where the exclusion of oxygen is still more nearly complete, the decomposition is so far retarded that plant-tissue, which is destroyed by combustion almost instantaneously, and if exposed to "the elements"--moisture with a free access of oxygen--decays in a year or two, may be but partially consumed when millions of years have passed. The final result is, however, inevitable, and always the same, viz., the oxidation and escape of the organic mutter, and the concentration of the inorganic matter woven into its composition--in it, but not of it--forming what we call the ash of the plant.
Since the decomposition of organic matter commences the instant it is abandoned by the creative and conservative vital force, and proceeds uninterruptedly, whether slowly or rapidly, to the final result, it is evident that each moment in the progress of this decomposition presents us with a phase of structure and composition different from that which preceded and from that which follows it. Hence the succession of these phases forms a complete sliding scale, which is graphically shown in the following diagram, where the organic constituents of plant tissue--carbon, hydrogen, oxygen, and nitrogen--appear gradually diminishing to extinction, while the ash remains nearly constant, but relatively increasing, till it is the sole representative of the fabric.
DIAGRAM SHOWING THE GENETIC RELATIONS OF THE CARBON
MINERALS.
We may cut this triangle of residual products where we please, and by careful analysis determine accurately the chemical composition of a section at this point, and we may please ourselves with the illusion, as many chemists have done, that the definite proportions found represent the formula of a specific compound; but an adjacent section above or below would show a different composition, and so in the entire triangle we should find an infinite series of formulae, or rather no constant formulae at all. We should also find that the slice, taken at any point while lying in the laboratory or undergoing chemical treatment, would change in composition, and become a different substance.
In the same way we can snatch a brand from the fire at any stage of its decomposition, or analyze a decaying tree trunk during any month of its existence, and thus manufacture as many chemical formulae as we like, and give them specific names; but it is evident that this is child's play, not science. The truth is, the slowly decomposing tissue of the plants of past ages has given us a series of phases which we have grouped under distinct names, and we have called one group peat, one lignite, another coal, another anthracite, and another graphite. We have spaced off the scale, and called all within certain lines by a common name; but this does not give us a common composition for all the material within these lines. Hence we see that any effort to define or describe coal, lignite, or anthracite accurately must be a failure, because neither has a fixed composition, neither is a distinct substance, but simply a conventional group of substances which form part of an infinite and indivisible series.
But this sliding scale of solid compounds, which we designate by the names given above, is not the only product of the natural and spontaneous distillation of plant tissue. Part of the original organic mass remains, though constantly wasting, to represent it; another part escapes, either completely oxidized as carbonic acid and water, or in a volatile or liquid form, still retaining its organic character, and destined to future oxidation, known as carbureted hydrogen, olefiant gas, petroleum, etc.
Hence, in the decomposition of vegetable tissue, two classes of resultant compounds are formed, one residual and the other evolved; and the genesis and relation of the carbon minerals may be accurately shown by the following diagram:
PLANT TISSUE
_________________
|
_Residual Products_ | _Evolved Products_
|
Peat. }
| }
Lignite. }
| } { Carbonic Acid.
Bitumious Coal. } { Carbonic Oxide.
| } { Carbureted Hydrogen, etc.
Semi-bitumious " } { Water.
| } { {Maltha.
Anthracite. } { { |
| } { {Asphalt etc.
Graphitie Anthracite. } { Petro- { |
| } { leum {Asphaltic Coal.
Graphite. } { |
| } {Asphaltic Anthracite.
Ash. } { |
{ " Graphite.
[NOTE.--In this diagram, the vertical line connecting the names of the residual products (and of the derivatives of petroleum) indicates that each succeeding one is produced by further alteration from that which precedes it, and not independently. Also, the arrangement of the braces is designed to show that any or all of the evolved products are given off at each stage of alteration.]