Our American rivers contain from 2 to 6 grains of saline matter to the gallon in solution, and a varying quantity--generally exceeding 10 grains to the gallon--in mechanical suspension. The waters of wells and springs hold a smaller quantity in suspension, but generally carry a larger percentage of dissolved salts in solution, varying from 10 to 650 grains to the gallon.

When waters containing the carbonates of lime and magnesia in solution are boiled, the carbonic acid is driven off, and the salts, deprived of their solvent, are rapidly precipitated in fine crystalline particles, which adhere tenaciously to whatever surface they fall upon. With respect to the sulphate of lime, the case is different. It is at best only sparingly soluble in water, one part (by weight) of the salt requiring nearly 500 parts of water to dissolve it. As the water evaporates in the boiler, however, a point is soon reached where supersaturation occurs, as the water freshly fed into it constantly brings fresh accessions of the salt; and when this point is reached, the sulphate of lime is precipitated in the same form and with the same tenaciously adherent quality as the carbonates. There is, however, a peculiar property possessed by this salt which facilitates its precipitation, namely, that its solubility in water diminishes as the temperature rises. This fact is of special interest, since, if properly taken advantage of, it is possible to effect its almost complete removal from the feed-water of boilers,

There is little difference in the solubility of the sulphate of lime until the temperature has risen somewhat above 212° Fahr., when it rapidly diminishes, and finally, at nearly 300°, all of this salt, held in solution at lower temperatures, will be precipitated when the temperature has risen to that point. The following table[1] represents the solubility of sulphate of lime in sea water at different temperatures:

Temperature. Percentage Sulph.
Fahr. Lime held in Solution.
217° 0.500
219° 0.477
221° 0.432
227° 0.395
232° 0.355
236° 0.310
240° 0.267
245° 0.226
250° 0.183
255° 0.140
261° 0.097
266° 0.060
271° 0.023
290° 0.000

[Footnote 1: Vide Burgh, "Modern Marine Engineering," page 176 et seq. M. Cousté, Annales des Mines V 69. Recherches sur Vincrustation des Chaudières a vapour. Mr. Hugh Lee Pattison, of Newcastle-on-Tyne, at the meeting of the Institute of Mechanical Engineers of Great Britain, in August, 1880, remarked on this subject that "The solubility of sulphate of lime in water diminishes as the temperature rises. At ordinary temperatures pure water dissolves about 150 grains of sulphate of lime per gallon; but at a temperature of 250° Fahr., at which the pressure of steam is equal to about 2 atmospheres, only about 40 grains per gallon are held in solution. At a pressure of 3 atmospheres, and temperature of 302° Fahr., it is practically insoluble. The point of maximum solubility is about 95° Fahr. The presence of magnesium chloride, or of calcium chloride, in water, diminishes its power of dissolving sulphate of lime, while the presence of sodium chloride increases that power. As an instance of the latter fact, we find a boiler works much cleaner which is fed alternately with fresh water and with brackish water pumped from the Tyne when the tide is high than one which is fed with fresh water constantly.">[

These figures hold substantially for fresh as well as for sea water, for the sulphate of lime becomes wholly insoluble in sea water, or in soft water, at temperatures comprised between 280° and 300° Fahr.

It appears from this that it is simply necessary to heat water up to a temperature of 250° in order to effect the precipitation of four fifths of the sulphate of lime it may have contained, or to the temperature of 290° in order to precipitate it entirely. The bearing of these facts on the purification of feed-waters will appear further on. The explanation offered to account for the gradually increasing insolubility of sulphate of lime on heating, is, that the hydrate, in which condition it exists in solution, is partially decomposed, anhydrous calcic sulphate being formed, the dehydration becoming more and more complete as the temperature rises. Sulphate of magnesia, chloride of sodium (common salt), and all the other more soluble salts contained in natural waters are likewise precipitated by the process of supersaturation, but owing to their extreme solubility their precipitation will never be effected in boilers; all mechanically suspended matter tends naturally to subside.

Where water containing such mineral and suspended matter is fed to a steam boiler, there results a combined deposit, of which the carbonate of lime usually forms the greater part, and which remains more or less firmly adherent to the inner surfaces of the boiler, undisturbed by the force of the boiling currents. Gradually accumulating, it becomes harder and thicker, and, if permitted to accumulate, may at length attain such thickness as to prevent the proper heating of the water by any fire that may be maintained in the furnace. Dr. Joseph G. Rogers, who has made boiler waters and incrustations a subject of careful study, declares that the high heats necessary to heat water through thick scale will sometimes actually convert the scale into a species of glass, by combining the sand, mechanically separated, with the alkaline salts. The same authority has carefully estimated the non-conducting properties of such boiler incrustations. On this point he remarks that the evil effects of the scale are due to the fact that it is relatively a nonconductor of heat. As compared with iron, its conducting power is as 1 to 37½, consequently more fuel is required to heat water in an incrusted boiler than in the same boiler if clean. Rogers estimates that a scale 1-16th of an inch thick will require the extra expenditure of 15 per cent. more fuel, and this ratio increases as the scale grows thicker. Thus, when it is one-quarter of an inch thick, 60 per cent. more fuel is needed; one-half inch, 112 per cent. more fuel, and so on.

Rogers very forcibly shows the evil consequences to the boiler from the excessive heating required to raise steam in a badly incrusted boiler, by the following illustration: To raise steam to a pressure of 90 pounds the water must be heated to about 320° Fahr. In a clean boiler of one-quarter inch iron this may be done by heating the external surface of the shell to about 325° Fahr. If, now, one-half an inch of scale intervenes between the boiler shell and the water, such is its quality of resisting the passage of heat that it will be necessary to heat the fire surface to about 700°, almost to a low red heat, to effect the same result. Now, the higher the temperature at which iron is kept the more rapidly it oxidizes, and at any heat above 600° it very soon becomes granular and brittle, and is liable to bulge, crack, or otherwise give way to the internal pressure. This condition predisposes the boiler to explosion and makes expensive repairs necessary. The presence of such scale, also, renders more difficult the raising, maintaining, and lowering of steam.

The nature of incrustation and the evils resulting therefrom having been stated, it now remains to consider the methods that have been devised to overcome them. These methods naturally resolve themselves into two kinds, chemical and mechanical. The chemical method has two modifications; in one the design is to purify the water in large tanks or reservoirs, by the addition of certain substances which shall precipitate all the scale-forming ingredients before the water is fed into the boiler; in the other the chemical agent is fed into the boiler from time to time, and the object is to effect the precipitation of the saline matter in such a manner that it will not form solid masses of adherent scale. Where chemical methods of purification are resorted to, the latter plan is generally followed as being the least troublesome. Of the many substances used for this purpose, however, some are measurably successful; the majority of them are unsatisfactory or objectionable.