Where a jet condenser is used, either of two plans may be adopted. One plan takes the feed-water from the hot well and passes the exhaust from the feed pumps through the heater, using at the same time an increased amount of coil for the live steam. By this means a temperature of water is attained high enough to cause deposition, and at the same time to produce decomposition of the oil brought over from the cylinders. The other plan places the heater in the line of exhaust from the engine to the condenser, also using a larger amount of coil. Both these methods work well. The writer sometimes uses the steam from the coil to work the feed pump; or, if the heater stands high enough, it is only necessary to make a connection with the boiler, when the water formed by the condensation of the steam runs back to the boiler, and thus the coil is kept constantly at the necessary temperature.
In adapting the heater to locomotives, we were met with the difficulty of want of space to put a heater sufficiently large to handle the extremely large amount of water evaporated on a locomotive worked up to its full capacity, being from 1,500 to 2,500 gallons per hour, or from five hundred to one thousand h.p. We designed various forms of heaters and tried them, but have finally decided on the one shown in the engraving, Fig. 3, which consists of a lap welded tube, 13 inches internal diameter, 12 feet long, with a cast-iron head which is divided into two compartments or chambers by a diaphragm. Into this head are screwed 60 tubes, one inch outside diameter and 12 feet long, which are of seamless brass. These are the heating tubes, within which are internal tubes for circulation only, which are screwed into the diaphragm and extend to within a very short distance of the end of the heating tube. The exhaust steam for heating is taken equally from both sides of the locomotive by tapping a two-inch nipple with a cup shaped extension on it in such a way as to catch a portion of the exhaust without interfering with the free escape of the steam for the blast, and without any back pressure, as it relieves the back pressure as much as it condenses. The pipe from one side of the engine is connected with the chamber into which the heating tubes are screwed, and is in direct communication with them. The pipe from the other side is connected with the chamber into which the circulating tubes are screwed. The beat of the exhaust, working, as it does, on the quarters, causes a constant sawing or backward and forward circulation of steam without any discharge, and only the condensation is carried off.
The water is brought from the pump and discharged into the lower side of the heater well forward, and passes around the heating tubes to the end, when it is discharged into a pipe that carries it forward, either direct to the check or into the purifier, which is located between the frames under the boiler, and consists of a chamber in which are arranged a live steam coil and a filter above the coil. The water coming in contact with the coil, its temperature is increased from the temperature of the exhaust, 210°, to about 250° Fahr., which causes the separation of the lime salts as before described, and it then passes through the filter and direct to the boiler from above the filter, which is cleansed by blowing back through it as before described.
One of these heaters lately tested showed a saving in coal of 22 per cent, and an increase of evaporation of 1.09 pounds of water per pound of coal.--Franklin Journal.
MONTEVERDE'S STATUE OF ARCHITECTURE.
This precious statue forms the noble figure that adorns the monument erected to the memory of the architect Carles Sada, who died in 1873. This remarkable funereal monument is 20 feet high, the superior portion consisting of a sarcophagus resting upon a level base. Upon this sarcophagus is placed the statue of "La Architectura," which we reproduce, and which well exemplifies the genius of the author and sculptor, Juli Monteverde.--La Ilustració Catalana.
LA ARCHITECTURA.--STATUE BY JULI MONTEVERDE.
ERECTED IN MEMORY OF THE ARCHITECT, CARLES SADA.