REFINING SILVER BULLION.

A number of years ago the author devised a method for refining silver bullion by sulphuric acid, in which iron was substituted for copper as precipitant of silver, the principal feature being the separation of pure crystals of silver sulphate. A full description of this process may be found in Percy's Metallurgy, "Silver and Gold," page 479. The process has been extensively worked in San Francisco and in Germany in refining bullion to the amount of more than a hundred million dollars' worth of silver. Its more general application has been hampered, however, by the circumstance that the patent had been secured by one firm which limited itself to its utilization in its California works. The patent having expired, the author lately introduced a modification of the process by which the apparatus and manipulations are greatly cheapened and simplified. In the following account is given a short description of the process in its present shape.

Preparing the Silver Sulphate.—The bullion, containing, essentially, silver, copper and gold, is dissolved by boiling with sulphuric acid in cast iron pots. The difference between the new process and the usual practice consists in the use of a much larger quantity of acid. Thus, in refining ordinary silver "dore," four parts of acid are used to one part of bullion. Of this acid one part is chemically and mechanically consumed in the dissolving process, and the remaining three parts are fully recovered and at once ready for reutilization, as will be described hereafter. In the usual process—understanding thereby, here and in the following, the process practiced at the United States mints, for instance—two parts of acid are employed for one of bullion; all of this is lost, partly through the dissolving and partly in being afterward mixed with water, previous to the precipitation of the silver by copper. Economy in acid being therefore imperative, the silver solution finally becomes much concentrated, and it requires high heat and careful management to finish the solution of the bullion. Bars containing more than about 10 per cent. of copper cannot be dissolved at all, owing to the separation of copper sulphate insoluble in the small amount of free acid finally remaining. The advantage gained by dissolving bullion with abundance of free acid in the improved process is so evident that it merely requires to be pointed out. For bullion containing 20 per cent. of copper the author employs six parts of acid to one of bullion; for baser metal still more acid, and so on, never losing more than the stochiometrical percentage of acid and recovering the remainder. In this description he, however, confines himself to the treatment of ordinary silver ore with less than 10 per cent. of copper.

In the diagram A A represent two refining pots, 4 ft. in diameter and 3 ft. in depth, each capable of dissolving at one operation as much as 400 pounds of bullion. The acid is stored in the cast iron reservoir, B, which is placed on a level sufficiently high to charge into A by gravitation, and is composed of fresh concentrated acid mixed with the somewhat dilute acid regained from a previous operation. After the bullion is fully dissolved all the acid still available is run from B into A A. The temperature and strength are thereby reduced, the fuming ceases, any still undissolved copper sulphate dissolves, and the gold settles. In assuming that the settling of the gold takes place in A itself, the author follows the practice of the United States mints. In private refineries, where refining is carried on continuously, the settling may take place in an intermediate vessel, and A A be at once recharged. Owing to the large amount of free acid present, the temperature must fall considerably before the separation of silver sulphate commences, and sufficient time may be allowed for settling if the intermediate vessel be judiciously arranged.

Separating the Silver Sulphate.—The clarified solution is siphoned off the gold from A A into C, which is an open cast iron pan, say 8 ft. by 4 ft. and 1 ft. deep. It is supported by means of a flange in another larger pan—not shown in the diagram—into which water may be admitted for cooling. Steam is blown into the acid solution, still very hot, as soon as C is filled. The steam is introduced about 1 in. below the surface of the liquid, blowing perpendicularly downward from a nozzle made of lead pipe through an aperture 1/8 in. in diameter. Under these circumstances the absorption of the steam is nearly perfect, and takes place without any splashing. The temperature rises with the increasing dilution, and may be regulated by the less experienced by manipulating the cooling tank. An actual boiling is not desired, because it protracts unnecessarily the operation by the less perfect condensation of the steam. No separation of silver sulphate occurs during this operation (and, consequently, there is no clotting of the steam nozzle), the large amount of free acid, combined with the increase of temperature, compensating for the diminution of the solubility of the sulphate by the dilution. The most important point in this procedure is to know when to stop the admission of steam. To determine this, the operator takes a drop or two of the solution upon a cold iron plate by means of a glass rod and observes whether after cooling the sample congeals partly or wholly into a white mass of silver bisulphate, or whether the silver separates as a monosulphate in detached yellow crystals, leaving a mother liquor behind. As soon as the latter point has been reached, steam is shut off and the solution is allowed to crystallize, cold water being admitted into the outer pan. The operator may now be certain that the liquid will no longer congeal into a soft mass of silver bisulphate, which on contact with water will disintegrate into powder, obstinately retaining a large amount of free acid; but the silver will separate as a monosulphate in hard and large yellow crystals retaining no acid and preserving their physical characteristics when thrown into water. After cooling to, say, 80° F., the silver sulphate will have coated the pan C about 1 in. thick. There will also be found a deposit of copper sulphate when the mother acid, after having been used over and over again, has been sufficiently saturated therewith. Lead sulphate separates in a cloud, which, however, will hardly settle at this stage.

The whole operation just described, which constitutes the most essential feature of the author's improvement upon his old process described in Dr. Percy's work, is a short one, as the acid requires by no means great dilution. The steam has merely to furnish enough water to dilute the free acid present to, say, 62° B. Areometrical determination is, of course, not possible, on account of the dissolved sulphates.

Reducing the Silver Sulphate to Fine Silver.—The mother acid is pumped from C to the reservoir, B, for this purpose an iron pipe connecting the top of B with a recess in the bottom of C. The tank, B, is cast as a closed vessel, with a manhole in the top, which is ordinarily kept closed by an iron plate resting on a rubber packing. The air is exhausted from B by a steam injector, and the acid rises from C and enters B without coming in contact with any valves. The volume of fresh commercial acid necessary for another dissolving operation, say 800 pounds, more or less, for refining 800 pounds of bullion in A A, is lifted from some other receptacle into B in the same manner. The mixture of the two acids in B now represents the volume of acid to be employed for dissolving and settling the next charge of 800 pounds of bullion in A A. In this reservoir, B, the cloud of lead sulphate mentioned above finds an opportunity for settling.

The crystals of silver sulphate are detached from C by an iron shovel and thrown into D. D is a lead lined tank about 4 ft. by 4 ft. and 3 ft. deep. It is divided into two compartments by means of a horizontal, perforated false bottom made of wood. From the lower compartment a lead pipe discharges into the lead lined reservoir, E. Warm distilled water is allowed to percolate the crystals until the usual ammonia test indicates that the copper sulphate has been sufficiently dissolved. Then the outflow is closed, sheets of iron are thrown on and into the crystals, the apparatus is filled with hot distilled water, and steam is moderately admitted into the lower compartment. Ferrous sulphate is formed, and in connection with the iron rapidly reduces the silver sulphate to the metallic state, the reduced silver retaining the heavy compact character of the crystals. When the reaction is completed, as indicated by the chlorine test, the liquid is discharged into E, the iron sheets are removed and the silver is sweetened either in the same vessel, D, or in a special filtering vessel which rests on wheels and may be run directly to the hydraulic press.

The vat, E, is the great reservoir where all liquids holding silver sulphate in solution are collected; for instance, that from sweetening the gold and from washing the tools. Sheets of iron here precipitate all silver and copper, and the resulting solution of ferrous sulphate is, with the usual precautions, discharged into the sewer. Occasionally when copper and silver have accumulated in E in sufficient amount the mass is thrown into D, silver sulphate crystals are added and sheet copper is thrown in, instead of sheet iron. There results a hot, neutral, concentrated solution of copper sulphate, which may be run at once into a crystallizing vat for the separation of commercial crystals of copper sulphate. It will be readily understood, of course, that if there should be any advantage in manufacturing that commercial article, besides the amount prepared as described, which represents merely the copper contained in the bullion, copper sheets may be regularly employed for reducing the silver sulphate in D. The author trusts that the practical refiner will recognize that the manufacture of commercial copper sulphate is thus effected in a more rational and economical manner than by the present method of evaporating from 25° B. to 35° B., and of saturating by oxidized copper, generally in a very incomplete manner, the large amount of free acid left from the refining by the usual process. However, the sale of copper sulphate is but rarely so profitable that a refinery should not gladly dispense with that troublesome and bulky manufacture, especially the government establishments, which, besides, waste much valuable space with the crystallizing vats.