We now come to the trombones, grand, sonorous tubes, which, existing in three or four sizes since the sixteenth century, are among the most potent additions on occasion to the full orchestra. Their treble can be regarded as the English slide trumpet, but it is not exactly so. There appears to have been as late as Bach a soprano trombone, and it is figured by Virdung, A.D. 1511, as no larger than the field trumpet. The trumpet is not on so large a caliber, and in the seventeenth century had its own family of two clarinos and three tubas. The old English name of the trombone is sackbut. The old wooden cornet, or German zinke, an obsolete, cupped mouthpiece instrument, the real bass of which, according to family, is the now obsolete serpent, was used in the sixteenth and seventeenth centuries as the treble instrument in combination with alto, tenor, and bass trombones. The leading features of the trumpet are also found, as already inferred, in the trombone; there is the cupped mouthpiece, the cylindrical tubing, and, finally, a gradual increase in diameter to the bell. The slide used for the trumpet appears for four centuries, and probably longer, in the well known construction of the trombone. In this instrument it consists of two cylindrical tubes parallel with each other, upon which two other tubes communicating by a pipe at their lower ends curved in a half circle glide without loss of air. The mouthpiece is fitted to an upper end, and a bell to a lower end of the slide. When the slide is closed, the instrument is at its highest pitch, and as the column of air is lengthened by drawing the slide out, the pitch is lowered. By this contrivance a complete chromatic scale can be obtained, and as the determination of the notes it produces is by ear, we have in it the only wind instrument that can compare in accuracy with stringed instruments. The player holds a cross bar between the two lengths of the instrument, which enables him to lengthen or shorten the slide at pleasure, and in the bass trombone, as the stretch would be too great for the length of a man's arm, a jointed handle is attached to the cross bar. The player has seven positions, each a semitone apart for elongation, and each note has its own system of harmonics, but in practice he only occasionally goes beyond the fifth. The present trombones are the alto in E flat descending to A in the seventh position; the tenor in B flat descending to E; the bass in F descending to B, and a higher bass in G descending to C sharp. Wagner, who has made several important innovations in writing for bass brass instruments, requires an octave bass trombone in B flat; an octave lower than the tenor one, in the "Nibelungen." The fundamental tones of the trombone are called "pedal" notes. They are difficult to get and less valuable than harmonics because, in all wind instruments, notes produced by overblowing are richer than the fundamental notes in tone quality. Valve trombones do not, however, find favor, the defects of intonation being more prominent than in shorter instruments. But playing with wide bore tubas and their kindred is not advantageous to this noble instrument.
The serpent has been already mentioned as the bass of the obsolete zinken or wooden cornets, straight or curved, with cupped mouthpiece. It gained its serpentine form from the facility given thereby to the player to cover the six holes with his fingers. In course of time keys were added to it, and when changed into a bassoon shape its name changed to the Russian bass horn or basson Russe. A Parisian instrument maker, Halary, in 1817, made this a complete instrument, after the manner of the keyed bugle of Halliday, and producing it in brass called it the ophicleide, from two Greek words meaning serpent and keys—keyed serpent—although it was more like a keyed bass bugle. The wooden serpent has gone out of use in military bands within recollection, the ophicleide from orchestras only recently. It has been superseded by the development of the valved tubas. The euphonium and bombardon, the basses of the important family of saxhorns, now completely cover the ground of bass wind instrument music. The keyed bugle, invented by Joseph Halliday, bandmaster of the Cavan militia, in 1810, may be regarded as the prototype of all these instruments, excepting that the keys have been entirely replaced by the valve system, an almost contemporary invention by Stölzel and Blumel, in Prussia, in 1815. The valve instruments began to prevail as early as 1850. The sound tube of all bugles, saxhorns, and tubas is conical, with a much wider curve than the horn. The quality of tone produced is a general kind of tone, not possessing the individuality of any of the older instruments. All these valve instruments may be comprehended under the French name of saxhorn. There is a division between them of the higher instruments or bugles, which do not sound the fundamental note, and of the lower, or tubas, which sound it readily. Properly military band instruments, the second or bass division, has been taken over to the orchestra; and Wagner has made great use of it in his great scores. The soprano cornets, bugles, or flugelhorns and saxhorns are in E flat; the corresponding alto instruments in B flat, which is also the pitch of the ordinary cornet. The tenor, baryton, and bass instruments follow in similar relation; the bass horns are, as I have said, called tubas; and that with four valves, the euphonium. The bombardon, or E flat tuba, has much richer lower notes.
For military purposes, this and the contrabass—the helicon—are circular. Finally, the contrabass tubas in B flat, and in C, for Wagner, have immense depth and potentiality of tone; all these instruments are capable of pianissimo.
There are many varieties now of these brass instruments, nearer particulars of which may be found in Gevaert, and other eminent musicians' works on instrumentation. One fact I will not pass by, which is that, from the use of brass instruments (which rise in pitch so rapidly under increase of temperature, as Mr. Blaikley has shown, almost to the coefficient of the sharpening under heat in organ pipes) has come about that rise in pitch which, from 1816 to 1846—until repressed by the authority of the late Sir Michael Costa, and, more recently, by the action of the Royal Military College at Kneller Hall—is an extraordinary feature in musical history. All previous variations in pitch—and they have comprised as much as a fourth in the extremes—having been due either to transposition, owing to the requirements of the human voice, or to national or provincial measurements. The manufacture of brass instruments is a distinct craft, although some of the processes are similar to those used by silversmiths, coppersmiths, and braziers.
I have only time to add a few words about the percussion instruments which the military band permits to connect with the wind. Drums are, with the exception of kettle drums, indeterminate instruments, hardly, in themselves, to be regarded as musical, and yet important factors of musical and especially rhythmic effect. The kettle drum is a caldron, usually of brass or copper, covered with a vellum head bound at the edge round an iron ring, which fits the circle formed by the upper part of the metal body. Screws working on this ring tune the vellum head, or vibrating membrane as we may call it, by tightening or slackening it, so as to obtain any note of the scale within its compass. The tonic and dominant are generally required, but other notes are, in some compositions, used; even octaves have been employed. The use Beethoven made of kettle drums may be regarded among the particular manifestations of his genius. Two kettle drums may be considered among the regular constituents of the orchestra, but this number has been extended; in one remarkable instance, that of Berlioz in his Requiem, to eight pairs. According to Mr. Victor de Pontigny, whose article I am much indebted to (in Sir George Grove's dictionary) upon the drum, the relative diameters, theoretically, for a pair of kettle drums are in the proportion of 30 to 26, bass and tenor; practically the diameter of the drums at the French opera is 29 and 25¼ inches, and of the Crystal Palace band, 28 and 24¼ inches. In cavalry regiments the drums are slung so as to hang on each side of the drummers horse's neck. The best drum sticks are of whalebone, each terminating in a small wooden button covered with sponge. For the bass drum and side drum I must be content to refer to Mr. Victor de Pontigny's article, and also for the tambourine, but the Provencal tambourines I have met with have long, narrow sound bodies, and are strung with a few very coarse strings which the player sounds with a hammer. This instrument is the rhythmic bass and support to the simple galoubet, a cylindrical pipe with two holes in front and one behind, sounded by the same performer. The English pipe and tabor is a similar combination, also with one player, of such a pipe and a small drum-head tambourine. Lastly, to conclude percussion instruments, cymbals are round metal plates, consisting of an alloy of copper and tin—say 80 parts to 20—with sunk hollow centers, from which the Greek name. They are not exactly clashed together to elicit their sound, but rubbed across each other in a sliding fashion. Like the triangle, a steel rod, bent into the form indicated by the name, but open at one corner so as to make it an elastic rod, free at both ends; the object is to add to the orchestral matter luminous crashes, as it were, and dazzling points of light, when extreme brilliancy is required.
In conclusion, I must be allowed to express my obligations to Dr. W.H. Stone and Mr. Victor Mahillon, to Mr. Ebenezer Prout, Mr. Richard Shepherd Rockstro, Mr. Lavoix fils, and Dr. H. Riemann, whose writings concerning wind instruments have materially helped me; to Messrs. Boosey & Co., and to Messrs. Rudall, Carte & Co., for the loan of the instruments used in the illustrations; and also to Mr. D.J. Blaikley and Mr. Henry Carte, for valuable personal aid on the present occasion. Their kindness in reading through my manuscript—Mr. Blaikley throughout—and in offering friendly and generous criticisms; also their presence and assistance by trial of the various instruments, I cannot adequately thank them for, or sufficiently extol.
(In the course of this lecture, Mr. Henry Carte played upon a concert flute, also a B flat and a G flute, an eight-keyed flute, and a recorder. Mr. D.J. Blaikley continued the illustrations upon the oboe, bassoon, clarinet, French horn, slide trumpet, valve tenor horn, cornet à piston, B flat tenor slide trombone, B flat euphonium, B flat contrabass tuba, and B flat contrabass double slide trombone.)
HOW GAS CYLINDERS ARE MADE.
The supply of compressed gas in metal cylinders has now assumed the proportions of an important industry, more especially since it was found possible, by the Brin process, to obtain oxygen direct from the atmosphere. The industry is not exactly a new one, for carbon dioxide and nitrous oxide (the latter for the use of dentists) have been supplied in a compressed state for many years. Now, with the creation of the modern amateur photographer, who can make lantern slides, and the more general adoption of the optical lantern for the purposes of demonstration and amusement, there has arisen a demand for the limelight such as was never experienced before, and as the limelight is dependent upon the two gases, hydrogen and oxygen, for its support, these gases are now supplied in large quantities commercially. At first the gas cylinders were made of wrought iron; they were cumbrous and heavy, and the pressure of the inclosed gas was so low that a receptacle to hold only ten feet was a most unwieldy concern. But times have changed, and a cylinder of about the same size, but half the weight, is now made to hold four times the quantity of gas at the enormous initial pressure of 1,800 pounds on every square inch. This means the pressure which an ordinary locomotive boiler has to withstand multiplied by twelve. The change is due to improved methods of manufacture and to the employment of mild steel of special quality in lieu of the wrought iron previously employed. The cylinders are now made without joint or seam, and the process of manufacture is most interesting. A short time ago we had an opportunity of watching the various necessary operations involved in making these cylinders at the Birmingham works of Messrs. Taunton, Delamard & Co., by whose courtesy we were enabled to make notes of the process.