The success of the recent applications of electricity in the production of certain metals and alloys led Dr. Readman to try this source of energy in the manufacture of phosphorus, and the results of the first series of experiments were so encouraging that he took out provisional protection on October 18, 1888, for preparing this valuable substance by its means.
The experiments were carried on at this time on a very small scale, the power at disposal being very limited in amount. Yet the elements of success appeared to be so great, and the decomposition of the raw material was so complete, that the process was very soon prosecuted on the large scale.
After a good deal of negotiation with several firms that were in a position to supply the electric energy required, Dr. Readman finally made arrangements with the directors of the Cowles Company, limited, of Milton, near Stoke-on-Trent, the well known manufacturers of alloys of aluminum, for a lease of a portion of their works and for the use of the entire electrical energy they produced for certain portions of the day.
The experiments on the large scale had not advanced very far before Dr. Readman became aware that another application for letters patent for producing phosphorus had been made by Mr. Thomas Parker, of Wolverhampton, and his chemist, Mr. A.E. Robinson. Their joint patent is dated December 5, 1888, and was thus applied for only seven weeks after Dr. Readman's application had been lodged.
It appeared that Mr. Parker had conducted a number of experiments simultaneously but quite independently of those carried on by Dr. Readman, and that he was quite unaware—as the latter was unaware—of any other worker in this field. It was no small surprise, therefore, to find during an interview which took place between these rival inventors some time after the date referred to, that the two patents were on practically the same lines, namely, the production of phosphorus by electricity.
Their interests lay so much together that, after some delay, they arranged to jointly work out the process, and the result has been the formation of a preliminary company and the erection on a large scale of experimental plant in the neighborhood of Wolverhampton to prove the commercial success of the new system of manufacturing phosphorus.
Before describing these experimental works it may be as well to see with what plant Dr. Readman has been working at the Cowles Company's works. And here we may remark that we are indebted to a paper read by Dr. Readman at the Philosophical Institution, Edinburgh, a short time ago; this paper being the third of a series which during the last year or two have been read by the same scientist on this branch of chemical industry. Here is an abstract giving a description of the plant. The works are near the Milton Station, on the North Staffordshire Railway. The boilers for generating the steam required are of the Babcock-Wilcox type, and are provided with "mechanical stokers;" the steam engine is of 600 horse power, and is a compound condensing horizontal tandem, made by Messrs. Pollitt & Wigzel, of Sowerby Bridge. The fly wheel of this engine is 20 feet in diameter, and weighs 30 tons, and is geared to the pulley of the dynamo, so that the latter makes five revolutions for each revolution of the engine by rope driving gear, consisting of eighteen ropes. The engine is an extremely fine specimen of a modern steam engine; it works so silently that a visitor standing with his back to the engine railings, at the time the engine is being started, cannot tell whether it is in motion or not.
With regard to the dynamo, the spindle is of steel, 18 feet long, with three bearings, one being placed on either side of the driving pulley. The diameter is 7 inches in the bearings and 10 inches in the part within the core. This part in the original forgings was 14 inches in diameter, and was planed longitudinally, so as to leave four projecting ribs or radial bars on which the core disks are driven, each disk having four key ways corresponding to these ribs. There are about 900 of these disks, the external diameter being 20 inches and the total length of the core 36 inches.
The armature winding consists of 128 copper bars, each 7/8 in. deep, measured radially, by 3/8 in. wide. These bars are coupled up so as to form thirty-two conductors only; this arrangement has been adopted to avoid the heating from the Foucault currents, which, with 1½ in. conductors, would have been very considerable. The bars are coupled at the ends of the core across a certain chord and are insulated.
The commutator is 20 inches long, and has sixty-four parts. The current is collected by eight brushes mounted on a separate ring, placed concentric to the commutator; and the current is led away from these brushes by a large number of thin bands of sheet copper strapped together into convenient groups. The field magnets are of the horizontal double type.