The objects of which I have been in search are quite different from the foregoing, and have reference not to the introduction of the remedy, but to the enhancement of its effects after exhibition. Let me be more explicit on this point, by stating at once that, in contradistinction to my predecessors, I shall endeavor to show that by far the most useful service derivable from compressed air is found in its ability to enhance and perpetuate the effects of soluble remedies (introduced hypodermically, by the mouth, or otherwise) upon the internal organs, and more especially upon the cerebro-spinal axis. Some chemical affinity between the remedy employed and the protoplasm of the nerve cell is, of course, assumed to exist; and it is with the enhancement of this affinity—this bond of union between the medicinal solution and the nervous element—that we shall chiefly concern ourselves in the following discussion.

By way of introduction, I may recall the fact that my attention was directed several years since to the advisability of devising some means by the aid of which medicinal substances, and more especially anæsthetics, might be made to localize, intensify, and perpetuate their action upon the peripheral nerves. The simple problem in physiology and mechanics involved in this question I was fortunate enough to solve quite a long time ago; and I must confess that in the retrospect these undertakings in themselves do not seem to me of great magnitude, though in their practical application their significance appears more considerable. Herein lies, it may be, the explanation of the interest which these studies excited in the profession at the time of their publication. These things are, however, a part of medical history; and I merely refer to them at this time because they have led me to resume the solution of a far greater problem—that of intensifying, perpetuating, and (to some extent at least) localizing the effects of remedies upon the brain and spinal cord. I speak of resuming these studies because, as far back as 1880 and 1882, I made some attempts—albeit rather abortive—in the same direction.

In constructing the argument for the following study, I am beholden more especially to three facts, the knowledge of which came to me as the direct result of experimental tests. One may place confidence, therefore, in the procedure which I have based upon these premises, for at no point, I think, in the following argument will mere affirmation be found to have usurped the place of sound induction. Without anticipating further, then, let me specify as briefly as may be the nature of these facts.

PREMISES OF ARGUMENT. First Fact.—The amount of ether, chloroform, chloral hydrate, the bromides, strychnine, and many other remedies, required to produce physiological effects upon the cerebro-spinal mechanism may be reduced by first securing a ligature around the central portion of one or several of the limbs of an animal, so as to interrupt both the arterial and venous circulation.

The proof and explanation of this may be thus presented:

In the first place, it is well known that children and small animals are affected by much smaller quantities of anæsthetics and other medicinal substances than are required to produce equal effects in men and large animals.

At first sight, there appears to exist a certain definite relation between the weight of the animal and the quantity of medicament required to produce physiological effects. On closer inquiry, however, we find behind this proposition the deeper truth that the real proportion is between the magnitude of the blood-mass and the amount of medicament. Thus, if we withdraw a considerable amount of blood from a large dog, we may be able to affect him by much smaller doses than those required under ordinary circumstances; and, among human beings, we find the anæmic much more susceptible to remedies than the full-blooded of equal weight.

The degree of saturation of the blood-mass with the remedy is obviously, then, the principal thing; the greater the amount of blood, the more remedy—everything else being equal—we shall have to give in order to obtain definite results.

If we wish to embody the proposition in a mathematical statement, we may do so in the following simple manner:

Let a represent the total quantity of blood, b, the amount of remedy exhibited, and x the magnitude of the physiological effect. We shall then have the simple formula, x = b / a.