This is a point we regard as not fully settled, though it will not long remain in doubt. There are enough of both types of wheels now in use to soon answer practically any question there may be of durability (upon which the point of economy hinges), so far as the interest on the increased cost due to rubber tires, is offset against the greater wear and tear of iron rimmed wheels. It is stated, on good authority that a rubber tired engine, started at work in Aberdeen, Scotland, wore out its tires between April and September, inclusive, and when it is taken into consideration, that the cost of these tires is about half that of other engines, made with solid iron rimmed driving wheels, it will be seen that, unless very much greater durability than this can be shown for the rubber, the advantages of such tires are very nearly, if not more than, balanced by their disadvantages.

The fact that one set of tires wore out so soon does not prove a rule. There may have been causes at work which do not affect such tires generally, and it would be, we think, quite premature to form favorable or unfavorable judgment, of relative economy from such data as have been yet furnished.

The difference in the current expenses of running the two most prominent types of engines, with hard and soft tires, now in use, does not affect the question of rubber tires, unless it can be shown that these tires necessitate, per se, such a form of engine as requires a greater consumption of fuel, and greater cost of attendance, to perform a given amount of work.

CENTRAL SHAFT OF THE HOOSAC TUNNEL.


As many of our readers have evinced much interest and ingenuity on the question of the propriety of placing reliance upon the accuracy of dropping a perpendicular from the top to the bottom of a shaft 1,030 feet in depth, by means of an ordinary plummet, we take the earliest opportunity of settling the matter beyond dispute, by reporting the results lately obtained, through a series of experiments by the engineers in charge, for the ultimate purpose of laying down the correct line for the tunnel.

The perpendicular line has, of course, been dropped many times, and the main result taken. The plummet used is made of steel, properly balanced and polished, in shape something like a pineapple, and of about the same size, weighing fifteen pounds. It was suspended, with the large end downwards, by a thin copper wire, one fortieth of an inch in diameter, immersed in water; and, after careful steadying with the hand, occupied about an hour in assuming its final position or motion, which, contrary to the expectation and theories of many, resulted in a circular motion around a fixed point, the diameter of the circle being a mean of one quarter of an inch. The suspending wire in these operations was not quite the entire length of the shaft, being only 900 feet; and before the plummet had settled, the wire had stretched nearly twenty feet.