Both toad and crayfish have organs for respiration, that is, for breathing in oxygen and breathing out carbonic acid gas. But the toad takes its oxygen from the atmosphere about it; its respiratory organs are the lungs, the sac-like tube leading to the mouth, and the external openings for the ingress and exit of the gases. The crayfish, living mostly in the water, takes its oxygen from the air which is mechanically mixed with the water. Its respiratory organs are its gills. There is a great difference, apparently, in the structural conditions of the organs of respiration in the two animals. As a matter of fact the difference is less great than, at first sight, appears to be the case. The lungs of the toad are composed primarily of a thin membrane, in the form of a sac, richly supplied with blood-vessels. Air is brought to this thin respiratory membrane and by osmosis the oxygen passes through the membrane and through the thin walls of the fine blood-vessels, and is taken up by the blood. At the same time the carbonic acid gas brought by the blood to the lungs from all parts of the body is given up by it and passes through the membranes in order to leave the body. The air comes in contact with the respiratory membrane (which is situated inside the body) by means of a system of external openings and a conducting chamber, and by these same openings and chamber the carbonic acid gas leaves the body. In the crayfish the gills are nothing else than a large number of small flattened sacs each composed of a thin membrane richly supplied with blood-vessels. This respiratory membrane is not, in the crayfish, situated inside the body, but on the outer surface, although protected by being in a sort of pocket with a covering flap, and it comes into immediate contact with the air held in the water which freely bathes the gills. By osmosis the oxygen of this air passes in through the gill-membranes, while the carbonic acid gas brought by the blood passes out through them. Exactly the same exchange of gases is accomplished as in the toad. But because of the great difference in the conditions of life of the toad and crayfish, one living in water, the other living out of water, the character of the performance of the function of respiration, and correspondingly the structural condition of the organs performing this function, are strikingly different.
Modification of functions and structure to fit the animal to special conditions of its life.—As has been done with the organs of digestion, circulation, and respiration, so we might compare the other organs of the crayfish and the toad. There would be found not only many very marked differences between organs which have the same general function in the two animals, but we should find also numerous organs in the toad which are not present at all in the crayfish, and conversely; and this means, of course, that the toad can do numerous things, perform numerous functions, which the crayfish cannot, and, conversely, that the crayfish does some things which the toad cannot. But both of these animals agree in possessing in common the capability of performing those processes such as taking food, breathing, reproducing, etc., to which attention has been called as being indispensable to all animal life. These processes, however, are performed by the two animals in different ways and the organs for the performance of these processes, although at very bottom essentially alike, are in outer and superficial details of position, appearance and general structure markedly different. Animals are fitted to live in different places amid different surroundings by having their bodies modified and the performance of their life-processes modified to suit the special conditions of their life.
Vertebrate and invertebrate.—In selecting the toad and the crayfish as the first animals to study and to compare with each other, we have chosen representatives of the two great groups into which the complexly organized animals are divided, viz., the group of backboned or vertebrate animals, and the group of backboneless or invertebrate animals. To the vertebrates belong all those which have an internal bony skeleton (and a few without such a skeleton) and which have also an arrangement of body-organs on the general plan of the toad's body. A conspicuous feature of this arrangement is the situation of the spinal cord or main great nerve-trunk along the back or dorsal wall of the animal, and inside of a backbone. All the fishes, batrachians (frogs, toads, salamanders, etc.), reptiles (snakes, lizards, alligators, etc.), birds, and mammals (quadrupeds, whales, seals, etc.) belong to the vertebrates. The backboneless or invertebrate animals have no internal bony skeleton and have their main nerve-trunk usually along the ventral wall of the body, sometimes in a circle around the mouth, but never in a backbone. To the invertebrates belong all insects, lobsters, crabs, clams, squids, snails, worms, starfishes and sea-urchins, corals and sponges, altogether a great host of animals, mostly small.
[CHAPTER VI]
AMŒBA AND PARAMŒCIUM
LABORATORY EXERCISE
Amœba.—Technical Note.—Amœbæ are found in stagnant pools of water on the dead leaves, sticks and slime at the bottom. To obtain them, collect slime and water from various puddles in separate bottles and take them to the laboratory. Place a small drop of slime on a slide under a cover-glass. Examine under the low power first and note any small transparent or opalescent objects in the field. Examine these objects with the higher power and note that some are mere granular jelly-like specks, which slowly (but constantly) change their form. These are Amœbæ.
A teacher of zoology recommends the following method of obtaining a large supply of Amœbæ: "For rearing Amœbæ place two or three inches of sand in a common tub, which is then filled with water and placed some feet from a north window; three or four opened mussels, with merest trace of the mud from the stream in which they are taken, are partially buried in the sand and a handful of Nitella and a couple of crayfish cut in two are added; as decomposition goes on a very gentle stream is allowed to flow into the tub, and after from two to four weeks abundant Amœbæ are to be found on the surface of the sand and in the scum on the sides of the tub; small Amœbæ appear at first, and later the large ones."
Having found an Amœba (fig. [5]) note its irregular shape, and if it moves actively observe its method of moving. How is this accomplished? The viscous, jelly-like substance which composes the whole body of an Amœba is called protoplasm. The little processes which stick out in various directions are the "false feet" (pseudopodia). Note that the outer portion, the ectosarc, of the protoplasmic body is clear, while the inner, the endosarc, is more or less granular in structure. Has Amœba a definite body-wall? Do the pseudopodia protrude only from certain parts of the body? Within the endosarc note a clear globular spot which contracts and expands, or pulsates, more or less regularly. This is the contractile vacuole. Note the small granules which move about within the endosarc. These are food-particles which have been taken in through the body-wall. Note how pseudopodia flow about food-particles in the water and how these are digested by the protoplasm. If an Amœba comes into contact with a particle of sand, note how it at once retreats. Note within the endosarc an oval transparent body which shows no pulsations. This is the nucleus, a very complex little structure of great importance in the make-up of Amœba.