Multiplication.—We know that any living animal has parents; that is, has been produced by other animals which may still be living or be now dead or, as with Amœba, may have changed, by division, into new individuals. Individuals die, but before death, they produce other individuals like themselves. If they did not, their kind or species would die with them. This production of new animals constantly going on is called the reproduction or multiplication of animals. The process is well called multiplication, because each female animal normally produces more than one new individual. She may produce only one at a time, one a year, as many of the sea-birds do or as the elephant does, but she lives many years. Or she may produce hundreds, or thousands, or even millions of young in a very short time. A lobster lays 10,000 eggs at a time. Nearly nine millions of eggs have been taken from the body of a thirty-pound female codfish. As a matter of fact but very, very few of these eggs produce new animals which reach maturity. From the 10,000 eggs produced by the lobster each year an average of but two new mature lobsters is produced. There is always a struggle for food and for place going on among animals, for many more are produced than there are food and room for, and so of all the new or young animals which are born the great majority are killed before they reach maturity. In a later chapter more attention will be given to this great struggle for life.
In the preceding paragraph it has been stated that "we know that any living animal has parents; that is, has been produced by other animals which may still be living or be now dead." This is a statement, however, which has found complete acceptance only in modern times. It is a familiar fact that a new kitten comes into the world only through being born; that it is the offspring of parents of its kind. But we may not be personally familiar with the fact that a new starfish comes into the world only as the production of parent starfish, or that a new earthworm can be produced only by other earthworms. But naturalists have proved these statements. All life comes from life; all organisms are produced by other organisms. And new individuals are produced by other individuals of the same kind. That these statements are true all modern observations and investigations of the origin of new individuals prove. But in the days of the earlier naturalists the life of the microscopic organisms like Amœba and Paramœcium, and even that of many of the larger but unfamiliar animals, was shrouded in mystery. And various and strange beliefs were held regarding the origin of new individuals.
Spontaneous generation.—The ancients believed that many animals were spontaneously generated. The early naturalists thought that flies arose by spontaneous generation from the decaying matter of dead animals. Frogs and many insects were thought to be generated spontaneously from mud, and horse-hairs in water were thought to change into water-snakes. But such beliefs were easily shown to be based on error, and have been long discarded by zoologists. But the belief that the microscopic organisms, such as bacteria and infusoria, were spontaneously generated in stagnant water or decaying organic liquids was held by some naturalists until very recent times. And it was not so easy to disprove the assertions of such believers. If some water in which there are apparently no living organisms, however minute, be allowed to stand for a few days, it will come to swarm with microscopic plants and animals. Any organic liquid, as a broth or a vegetable infusion, exposed to the air for a short time becomes foul through the presence of innumerable microscopic organisms. But it has been certainly proved that these organisms are not spontaneously produced in the water or organic fluid. A few of them enter the water from the air, in which there are always greater or less numbers of spores of microscopic organisms. These spores germinate quickly when they fall into water or some organic liquid, and the rapid succession of generations soon gives rise to the hosts of bacteria and one-celled animals which infest all standing water. If all the active organisms and inactive spores in a glass of water are killed by boiling the water, and this sterilized water be put into a sterilized glass, and this glass be so well closed that germs or spores cannot pass from the air without into the sterilized liquid, no living animals will ever appear in it. We know of no instance of the spontaneous generation of animals, and all the animals whose life-history we know are produced by other animals of the same kind.
Simplest multiplication and development.—The simplest method of multiplication and the simplest kind of development shown among animals are exhibited by such simple animals as Amœba and Paramœcium. The production of new individuals is accomplished in Amœba by a simple division or fission of its body (a single cell) into two practically equivalent parts. An Amœba which has grown for some time contracts all of its finger-like processes, the pseudopodia, and its body becomes constricted. This constriction or fissure increases inwards so that the body is soon divided fairly in two. There are now two Amœbæ, each half the size of the original one; each, indeed, actually one-half of the original one. The original Amœba was the parent; the two halves of it are the young. Each of the young possesses all of the characteristics and powers of the parent; each can move, eat, feel, grow, and reproduce by fission. The only change necessary for the young or new Amœba to become like its parent, is that of simple growth to a size about twice its present size. The development here is reduced to a minimum. Just as the simplest animals perform the other life-processes, such as taking and digesting food, breathing and feeling, in an extremely primitive simple way, so do they perform the necessary life-process of reproduction or multiplication in the simplest way shown among animals.
In the case of Paramœcium the process of multiplication is slightly more complex than that of Amœba in the fact that sometimes before the simple fission of the body takes place the interesting phenomenon of conjugation occurs. Paramœcium may reproduce itself for many generations by simple fission, but a generation finally appears in which conjugation takes place. Two individuals come together and each exchanges with the other a part of its nucleus. Then the two individuals separate and each divides into two. The result of the conjugation, or the coming together, of two individuals with mutual interchange of nuclear substance is to give to the new Paramœcia produced by the conjugating individuals a body which contains part of the body-substance of two distinct individuals. If the two conjugating individuals differ at all—and they always do differ, because no two individual animals, although belonging to the same species, are exactly alike—the new individual, made up of parts of each of them, will differ slightly from both. Nature seems intent on making every new individual differ slightly from the individual which precedes it. And the method of multiplication which Nature has adopted to produce the result is the method which we have seen exhibited in its simplest form in the case of Paramœcium—the method of having two individuals take part in the production of a new one.
The development of the new Paramœcia is a little more complex than that of Amœba. Not only must the new Paramœcium grow to the size of the original one, but it must develop those slight, but apparent, modifications of the parts of its body which we can recognize in the full-grown, fully developed Paramœcium individual. A new mouth-opening must develop on the new individual formed of the hinder half of the original Paramœcium and new cilia must be developed. Thus there is a slight advance in complexity of development, just as there is in complexity of structure in Paramœcium as compared with Amœba. In the many-celled animals this complexity of development is carried to an extreme.
Birth and hatching.—When a young animal is born alive, it usually resembles in appearance and structure the parent, although of course it is much smaller, and requires always a certain time to complete its development and become mature. A young kangaroo or opossum is carried for some time after its birth in an external pouch on the mother's body and is a very helpless animal. A young kitten is born with eyes not yet opened and must be fed by the mother for several weeks. On the other hand young Rocky Mountain sheep are able to run about swiftly within a few hours after birth.
Most animals appear first as eggs laid by the mother. This is true of the birds, the reptiles, the fishes, the insects, and most of the hosts of invertebrate animals. This egg may be cared for by the parent as with the birds, or simply deposited in a safe place as with most insects, or perhaps dropped without care into the water as with most marine invertebrates. The young animal which issues from the egg may at the time of its hatching resemble the parent in appearance and structural character (although always much smaller) as with the birds, some of the insects, and many of the other animals. Or it may issue in a so-called larval condition, in which it resembles the parent but slightly or not at all, as is the case with the gill-bearing, legless, tailed tadpole of the frog or the crawling, wingless, wormlike caterpillar of the butterfly, or the maggot of the house-fly.
Life-history.—Any animal which hatches from an egg has undergone a longer or shorter period of development within the egg-shell before hatching. The development of an animal from first germ-cell to the time it leaves the egg, for example, the development of the embryo chick from the first cell to time of hatching, is called its embryonic development; and the development from then on, for example, that of the chick to adult hen or rooster, or that of tadpole to frog, is called the post-embryonic development. Beginning students of animals cannot study the embryonic development (embryology) of animals readily, but they can in many cases easily follow the course of the post-embryonic development, and this study will always be interesting and valuable. When the "life-history" of an animal is spoken of in this book, or other elementary text-book of zoology, it is the history of the life of the animal from the time of its birth or hatching to and through adult condition that is meant, not the complete life-history from beginning single egg-cell to the end. In all of the study of the different kinds of animals to which the rest of this book is devoted, attention will be paid to their life-history.