For trackers we prefer round rods, made precisely as above, but with a ¼-inch bead. If tapped wires are to be inserted in the ends of the trackers, it is well to flatten the inserted end of the wire by hammering it, that it may not turn round in the wood when the button is afterwards applied. A fine saw-cut is made in the end of the tracker, the flattened part of the tapped wire inserted, and strong red thread, well waxed, neatly tied round. The ends thus whipped are sometimes varnished with a red composition. But this is superfluous.

If flat trackers are unavoidable, they may be cut from a three-eighth pine board with a gauge, armed with a cutting-point instead of the usual scoring-pin. A smoothing plane should be specially prepared by fixing two slips of wood to its face. These slips will prevent the plane from cutting anything thinner than themselves. Then, the plane being held firmly down upon the bench, an assistant, walking backwards, draws the tracker beneath the blade until it is reduced to the same thickness as the slips, say ⅛ inch. The tapped wires will be inserted and the ends whipped as before.

The squares shown in Fig. 28 are cut from thin boards of oak or mahogany. Perhaps it will be found less troublesome and laborious to make each square of two distinct arms, halved together and glued at the angle, or more effectually joined by tenon and mortice. Metal squares can be bought ready made, or they may be cut with shears from brass plate. But we should use wood ourselves.

The rollers will be of pine or deal. They are cut out and dressed up as square or rectangular rods of the requisite length, but two of their sides are afterwards rounded or curved. It follows from this that when arranged side by side on their board the curved sides may be nearly in contact. As our rollers are short, three-quarters stuff will suffice for them, but rods inch or more square should be used when rollers have a length exceeding 2 feet or 30 inches.

Iron roller-arms have some great advantages, and they may be bought at a moderate price per gross, neatly bushed at the holes to prevent a rattling of metal against metal. But we ourselves deliberately prefer arms of wood, involving, as they do, much greater labour. If these are used, they should be made of oak or other hard wood, and let neatly into a little mortice in the flat side of the roller. After they are glued in, the holes may be pierced in each end of the roller to receive the wires or pivots on which it revolves, and which should be stout and rounded smoothly at the external extremity. One of the reasons why we prefer wooden arms is this, viz. that the pivot can be driven into or through the arm, which may thus be at the extreme end of the roller; while if iron arms are used a margin or surplus must be left at each end of the roller to allow room for the insertion of the pivot without interfering with the arm, the screw of which passes through the axis of the roller. But it is undeniable that iron arms abridge labour and save time.

The studs in which the pivots are supported are also among the fittings which can be obtained from the shops; but we have always made our own of oak, turning the peg or shank in the lathe. These studs must be bushed with cloth. Drill the hole truly through the stud, using a borer much larger than the pivot-wire. Cut a strip of red cloth about ⅜ inch in width. Point one end of it, and draw it through the hole in the stud. It will adapt itself to the circular hole, and will take the form of a cloth pipe lining the hole, and effectually preventing a rattling noise which would certainly be heard in its absence.

The planning of a roller-board, so as to economise space as much as possible, is one of those operations which call for forethought and ingenuity. The forms which it may assume are numerous; we shall indicate by one or two simple diagrams some of the combinations of the fan-frame with rollers which occur in ordinary practice.

Fig. 36 shows the usual way of carrying the touch to the pallets on the right and left in the common form of sound-board shown in Fig. 6. A set of backfalls is assumed as in situ under the wind-chest, parallel to each other as regards the six pallets at each extremity, but fan-framewise as regards the pallets from Tenor C to the top. As the actual key-board (disregarding its frame) is about 2 feet 6 inches in width, while the row of pull-downs on which it is to operate extends to a length of 4 feet or more, we see that there will be an overhanging margin or surplus of the wind-chest on each side of some 9 or more inches, and it is probable that all the pallets affected by rollers will be included in these overhanging portions of the chest.

Fig. 36.